Algèbre Exemples

Resolva para x x/9=(x-3)/(x-1)
Étape 1
Multipliez le numérateur de la première fraction par le dénominateur de la deuxième fraction. Définissez une valeur égale au produit du dénominateur de la première fraction et du numérateur de la deuxième fraction.
Étape 2
Résolvez l’équation pour .
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 2.1.1
Réécrivez.
Étape 2.1.2
Simplifiez en multipliant.
Appuyez ici pour voir plus d’étapes...
Étape 2.1.2.1
Appliquez la propriété distributive.
Étape 2.1.2.2
Simplifiez l’expression.
Appuyez ici pour voir plus d’étapes...
Étape 2.1.2.2.1
Multipliez par .
Étape 2.1.2.2.2
Déplacez à gauche de .
Étape 2.1.3
Réécrivez comme .
Étape 2.2
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1
Appliquez la propriété distributive.
Étape 2.2.2
Multipliez par .
Étape 2.3
Déplacez tous les termes contenant du côté gauche de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 2.3.1
Soustrayez des deux côtés de l’équation.
Étape 2.3.2
Soustrayez de .
Étape 2.4
Ajoutez aux deux côtés de l’équation.
Étape 2.5
Utilisez la formule quadratique pour déterminer les solutions.
Étape 2.6
Remplacez les valeurs , et dans la formule quadratique et résolvez pour .
Étape 2.7
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 2.7.1
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 2.7.1.1
Élevez à la puissance .
Étape 2.7.1.2
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 2.7.1.2.1
Multipliez par .
Étape 2.7.1.2.2
Multipliez par .
Étape 2.7.1.3
Soustrayez de .
Étape 2.7.1.4
Réécrivez comme .
Étape 2.7.1.5
Réécrivez comme .
Étape 2.7.1.6
Réécrivez comme .
Étape 2.7.1.7
Réécrivez comme .
Appuyez ici pour voir plus d’étapes...
Étape 2.7.1.7.1
Factorisez à partir de .
Étape 2.7.1.7.2
Réécrivez comme .
Étape 2.7.1.8
Extrayez les termes de sous le radical.
Étape 2.7.1.9
Déplacez à gauche de .
Étape 2.7.2
Multipliez par .
Étape 2.7.3
Simplifiez .
Étape 2.8
La réponse finale est la combinaison des deux solutions.