Entrer un problème...
Algèbre Exemples
Étape 1
Étape 1.1
Utilisez la propriété du quotient des logarithmes, .
Étape 1.2
Factorisez à partir de .
Étape 1.2.1
Factorisez à partir de .
Étape 1.2.2
Factorisez à partir de .
Étape 1.2.3
Factorisez à partir de .
Étape 1.3
Annulez le facteur commun de .
Étape 1.3.1
Annulez le facteur commun.
Étape 1.3.2
Réécrivez l’expression.
Étape 1.4
Annulez le facteur commun à et .
Étape 1.4.1
Factorisez à partir de .
Étape 1.4.2
Annulez les facteurs communs.
Étape 1.4.2.1
Élevez à la puissance .
Étape 1.4.2.2
Factorisez à partir de .
Étape 1.4.2.3
Annulez le facteur commun.
Étape 1.4.2.4
Réécrivez l’expression.
Étape 1.4.2.5
Divisez par .
Étape 1.5
Appliquez la propriété distributive.
Étape 1.6
Simplifiez l’expression.
Étape 1.6.1
Multipliez par .
Étape 1.6.2
Déplacez à gauche de .
Étape 2
Étape 2.1
Réécrivez comme une équation.
Étape 2.2
Réécrivez en forme exponentielle en utilisant la définition d’un logarithme. Si et sont des nombres réels positifs et n’est pas égal à , est équivalent à .
Étape 2.3
Créez dans l’équation des expressions qui ont toutes des bases égales.
Étape 2.4
Réécrivez comme .
Étape 2.5
Les bases étant les mêmes, deux expressions ne sont égales que si les exposants sont également égaux.
Étape 2.6
Résolvez .
Étape 2.7
La variable est égale à .
Étape 3
Réécrivez en forme exponentielle en utilisant la définition d’un logarithme. Si et sont des nombres réels positifs et , alors est équivalent à .
Étape 4
Étape 4.1
Réécrivez l’équation comme .
Étape 4.2
Simplifiez .
Étape 4.2.1
Simplifiez l’expression.
Étape 4.2.1.1
Réécrivez comme .
Étape 4.2.1.2
Appliquez la règle de puissance et multipliez les exposants, .
Étape 4.2.2
Annulez le facteur commun de .
Étape 4.2.2.1
Annulez le facteur commun.
Étape 4.2.2.2
Réécrivez l’expression.
Étape 4.2.3
Élevez à la puissance .
Étape 4.3
Soustrayez des deux côtés de l’équation.
Étape 4.4
Factorisez à l’aide de la méthode AC.
Étape 4.4.1
Étudiez la forme . Déterminez une paire d’entiers dont le produit est et dont la somme est . Dans ce cas, dont le produit est et dont la somme est .
Étape 4.4.2
Écrivez la forme factorisée avec ces entiers.
Étape 4.5
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 4.6
Définissez égal à et résolvez .
Étape 4.6.1
Définissez égal à .
Étape 4.6.2
Ajoutez aux deux côtés de l’équation.
Étape 4.7
Définissez égal à et résolvez .
Étape 4.7.1
Définissez égal à .
Étape 4.7.2
Soustrayez des deux côtés de l’équation.
Étape 4.8
La solution finale est l’ensemble des valeurs qui rendent vraie.
Étape 5
Excluez les solutions qui ne rendent pas vrai.