Algèbre Exemples

Resolva para x log base cube root of 3 of x^10+6=36
Étape 1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
La base logarithmique de est .
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1
Réécrivez comme une équation.
Étape 1.1.2
Réécrivez en forme exponentielle en utilisant la définition d’un logarithme. Si et sont des nombres réels positifs et n’est pas égal à , est équivalent à .
Étape 1.1.3
Créez des expressions équivalentes dans l’équation qui ont toutes des bases égales.
Étape 1.1.4
Les bases étant les mêmes, les deux expressions ne sont égales que si les exposants sont également égaux.
Étape 1.1.5
La variable est égale à .
Étape 1.2
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 1.2.1
Déplacez .
Étape 1.2.2
Multipliez par .
Étape 2
Déplacez tous les termes ne contenant pas du côté droit de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Soustrayez des deux côtés de l’équation.
Étape 2.2
Soustrayez de .
Étape 3
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Divisez chaque terme dans par .
Étape 3.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1.1
Annulez le facteur commun.
Étape 3.2.1.2
Divisez par .
Étape 4
Prenez la racine spécifiée des deux côtés de l’équation pour éliminer l’exposant du côté gauche.
Étape 5
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Réécrivez comme .
Étape 5.2
Multipliez par .
Étape 5.3
Associez et simplifiez le dénominateur.
Appuyez ici pour voir plus d’étapes...
Étape 5.3.1
Multipliez par .
Étape 5.3.2
Élevez à la puissance .
Étape 5.3.3
Élevez à la puissance .
Étape 5.3.4
Utilisez la règle de puissance pour associer des exposants.
Étape 5.3.5
Additionnez et .
Étape 5.3.6
Réécrivez comme .
Appuyez ici pour voir plus d’étapes...
Étape 5.3.6.1
Utilisez pour réécrire comme .
Étape 5.3.6.2
Appliquez la règle de puissance et multipliez les exposants, .
Étape 5.3.6.3
Associez et .
Étape 5.3.6.4
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 5.3.6.4.1
Annulez le facteur commun.
Étape 5.3.6.4.2
Réécrivez l’expression.
Étape 5.3.6.5
Simplifiez
Étape 5.4
Associez en utilisant la règle de produit pour les radicaux.
Étape 6
La solution complète est le résultat des parties positive et négative de la solution.
Appuyez ici pour voir plus d’étapes...
Étape 6.1
Commencez par utiliser la valeur positive du pour déterminer la première solution.
Étape 6.2
Ensuite, utilisez la valeur négative du pour déterminer la deuxième solution.
Étape 6.3
La solution complète est le résultat des parties positive et négative de la solution.
Étape 7
The variable got canceled for any value of .
Tous les nombres réels
Étape 8
Le résultat peut être affiché en différentes formes.
Tous les nombres réels
Notation d’intervalle :