Entrer un problème...
Algèbre Exemples
Étape 1
Écrivez comme une équation.
Étape 2
Interchangez les variables.
Étape 3
Étape 3.1
Réécrivez l’équation comme .
Étape 3.2
Multipliez les deux côtés de l’équation par .
Étape 3.3
Simplifiez le côté gauche.
Étape 3.3.1
Annulez le facteur commun de .
Étape 3.3.1.1
Annulez le facteur commun.
Étape 3.3.1.2
Réécrivez l’expression.
Étape 3.4
Ajoutez aux deux côtés de l’équation.
Étape 3.5
Prenez la racine spécifiée des deux côtés de l’équation pour éliminer l’exposant du côté gauche.
Étape 3.6
La solution complète est le résultat des parties positive et négative de la solution.
Étape 3.6.1
Commencez par utiliser la valeur positive du pour déterminer la première solution.
Étape 3.6.2
Ensuite, utilisez la valeur négative du pour déterminer la deuxième solution.
Étape 3.6.3
La solution complète est le résultat des parties positive et négative de la solution.
Étape 4
Remplacez par pour montrer la réponse finale.
Étape 5
Étape 5.1
Le domaine de l’inverse est la plage de la fonction initiale et inversement. Déterminez le domaine et la plage de et puis comparez-les.
Étape 5.2
Déterminez la plage de .
Étape 5.2.1
La plage est l’ensemble de toutes les valeurs valides. Utilisez le graphe pour déterminer la plage.
Notation d’intervalle :
Étape 5.3
Déterminez le domaine de .
Étape 5.3.1
Définissez le radicande dans supérieur ou égal à pour déterminer où l’expression est définie.
Étape 5.3.2
Résolvez .
Étape 5.3.2.1
Soustrayez des deux côtés de l’inégalité.
Étape 5.3.2.2
Divisez chaque terme dans par et simplifiez.
Étape 5.3.2.2.1
Divisez chaque terme dans par .
Étape 5.3.2.2.2
Simplifiez le côté gauche.
Étape 5.3.2.2.2.1
Annulez le facteur commun de .
Étape 5.3.2.2.2.1.1
Annulez le facteur commun.
Étape 5.3.2.2.2.1.2
Divisez par .
Étape 5.3.2.2.3
Simplifiez le côté droit.
Étape 5.3.2.2.3.1
Placez le signe moins devant la fraction.
Étape 5.3.3
Le domaine est l’ensemble des valeurs de qui rendent l’expression définie.
Étape 5.4
Comme le domaine de n’est pas égal à la plage de , n’est pas un inverse de .
Il n’y a pas d’inverse
Il n’y a pas d’inverse
Étape 6