Entrer un problème...
Algèbre Exemples
Étape 1
Étape 1.1
Remplacez toutes les occurrences de dans par .
Étape 1.2
Simplifiez le côté gauche.
Étape 1.2.1
Simplifiez .
Étape 1.2.1.1
Simplifiez chaque terme.
Étape 1.2.1.1.1
Réécrivez comme .
Étape 1.2.1.1.2
Développez à l’aide de la méthode FOIL.
Étape 1.2.1.1.2.1
Appliquez la propriété distributive.
Étape 1.2.1.1.2.2
Appliquez la propriété distributive.
Étape 1.2.1.1.2.3
Appliquez la propriété distributive.
Étape 1.2.1.1.3
Simplifiez et associez les termes similaires.
Étape 1.2.1.1.3.1
Simplifiez chaque terme.
Étape 1.2.1.1.3.1.1
Multipliez par en additionnant les exposants.
Étape 1.2.1.1.3.1.1.1
Utilisez la règle de puissance pour associer des exposants.
Étape 1.2.1.1.3.1.1.2
Additionnez et .
Étape 1.2.1.1.3.1.2
Multipliez par .
Étape 1.2.1.1.3.1.3
Multipliez par .
Étape 1.2.1.1.3.1.4
Multipliez par .
Étape 1.2.1.1.3.2
Additionnez et .
Étape 1.2.1.2
Additionnez et .
Étape 2
Étape 2.1
Remplacez dans l’équation. Cela facilitera l’utilisation de la formule quadratique.
Étape 2.2
Soustrayez des deux côtés de l’équation.
Étape 2.3
Associez les termes opposés dans .
Étape 2.3.1
Soustrayez de .
Étape 2.3.2
Additionnez et .
Étape 2.4
Factorisez à partir de .
Étape 2.4.1
Factorisez à partir de .
Étape 2.4.2
Factorisez à partir de .
Étape 2.4.3
Factorisez à partir de .
Étape 2.5
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 2.6
Définissez égal à .
Étape 2.7
Définissez égal à et résolvez .
Étape 2.7.1
Définissez égal à .
Étape 2.7.2
Soustrayez des deux côtés de l’équation.
Étape 2.8
La solution finale est l’ensemble des valeurs qui rendent vraie.
Étape 2.9
Remplacez à nouveau la valeur réelle de dans l’équation résolue.
Étape 2.10
Résolvez la première équation pour .
Étape 2.11
Résolvez l’équation pour .
Étape 2.11.1
Prenez la racine spécifiée des deux côtés de l’équation pour éliminer l’exposant du côté gauche.
Étape 2.11.2
Simplifiez .
Étape 2.11.2.1
Réécrivez comme .
Étape 2.11.2.2
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels positifs.
Étape 2.11.2.3
Plus ou moins est .
Étape 2.12
Résolvez la deuxième équation pour .
Étape 2.13
Résolvez l’équation pour .
Étape 2.13.1
Supprimez les parenthèses.
Étape 2.13.2
Prenez la racine spécifiée des deux côtés de l’équation pour éliminer l’exposant du côté gauche.
Étape 2.13.3
Simplifiez .
Étape 2.13.3.1
Réécrivez comme .
Étape 2.13.3.2
Réécrivez comme .
Étape 2.13.3.3
Réécrivez comme .
Étape 2.13.4
La solution complète est le résultat des parties positive et négative de la solution.
Étape 2.13.4.1
Commencez par utiliser la valeur positive du pour déterminer la première solution.
Étape 2.13.4.2
Ensuite, utilisez la valeur négative du pour déterminer la deuxième solution.
Étape 2.13.4.3
La solution complète est le résultat des parties positive et négative de la solution.
Étape 2.14
La solution à est .
Étape 3
Étape 3.1
Remplacez toutes les occurrences de dans par .
Étape 3.2
Simplifiez le côté droit.
Étape 3.2.1
Simplifiez .
Étape 3.2.1.1
L’élévation de à toute puissance positive produit .
Étape 3.2.1.2
Additionnez et .
Étape 4
Étape 4.1
Remplacez toutes les occurrences de dans par .
Étape 4.2
Simplifiez le côté droit.
Étape 4.2.1
Simplifiez .
Étape 4.2.1.1
Simplifiez chaque terme.
Étape 4.2.1.1.1
Appliquez la règle de produit à .
Étape 4.2.1.1.2
Réécrivez comme .
Étape 4.2.1.1.3
Réécrivez comme .
Étape 4.2.1.1.3.1
Utilisez pour réécrire comme .
Étape 4.2.1.1.3.2
Appliquez la règle de puissance et multipliez les exposants, .
Étape 4.2.1.1.3.3
Associez et .
Étape 4.2.1.1.3.4
Annulez le facteur commun de .
Étape 4.2.1.1.3.4.1
Annulez le facteur commun.
Étape 4.2.1.1.3.4.2
Réécrivez l’expression.
Étape 4.2.1.1.3.5
Évaluez l’exposant.
Étape 4.2.1.1.4
Multipliez par .
Étape 4.2.1.2
Additionnez et .
Étape 5
Étape 5.1
Remplacez toutes les occurrences de dans par .
Étape 5.2
Simplifiez le côté droit.
Étape 5.2.1
Simplifiez .
Étape 5.2.1.1
L’élévation de à toute puissance positive produit .
Étape 5.2.1.2
Additionnez et .
Étape 6
Étape 6.1
Remplacez toutes les occurrences de dans par .
Étape 6.2
Simplifiez le côté droit.
Étape 6.2.1
Simplifiez .
Étape 6.2.1.1
Simplifiez chaque terme.
Étape 6.2.1.1.1
Appliquez la règle de produit à .
Étape 6.2.1.1.2
Réécrivez comme .
Étape 6.2.1.1.3
Réécrivez comme .
Étape 6.2.1.1.3.1
Utilisez pour réécrire comme .
Étape 6.2.1.1.3.2
Appliquez la règle de puissance et multipliez les exposants, .
Étape 6.2.1.1.3.3
Associez et .
Étape 6.2.1.1.3.4
Annulez le facteur commun de .
Étape 6.2.1.1.3.4.1
Annulez le facteur commun.
Étape 6.2.1.1.3.4.2
Réécrivez l’expression.
Étape 6.2.1.1.3.5
Évaluez l’exposant.
Étape 6.2.1.1.4
Multipliez par .
Étape 6.2.1.2
Additionnez et .
Étape 7
Étape 7.1
Remplacez toutes les occurrences de dans par .
Étape 7.2
Simplifiez le côté droit.
Étape 7.2.1
Simplifiez .
Étape 7.2.1.1
Simplifiez chaque terme.
Étape 7.2.1.1.1
Utilisez la règle de puissance pour distribuer l’exposant.
Étape 7.2.1.1.1.1
Appliquez la règle de produit à .
Étape 7.2.1.1.1.2
Appliquez la règle de produit à .
Étape 7.2.1.1.2
Élevez à la puissance .
Étape 7.2.1.1.3
Multipliez par .
Étape 7.2.1.1.4
Réécrivez comme .
Étape 7.2.1.1.5
Réécrivez comme .
Étape 7.2.1.1.5.1
Utilisez pour réécrire comme .
Étape 7.2.1.1.5.2
Appliquez la règle de puissance et multipliez les exposants, .
Étape 7.2.1.1.5.3
Associez et .
Étape 7.2.1.1.5.4
Annulez le facteur commun de .
Étape 7.2.1.1.5.4.1
Annulez le facteur commun.
Étape 7.2.1.1.5.4.2
Réécrivez l’expression.
Étape 7.2.1.1.5.5
Évaluez l’exposant.
Étape 7.2.1.1.6
Multipliez par .
Étape 7.2.1.2
Additionnez et .
Étape 8
Indiquez toutes les solutions.
Étape 9