Entrer un problème...
Algèbre Exemples
Étape 1
Soustrayez des deux côtés de l’équation.
Étape 2
Étape 2.1
Simplifiez le dénominateur.
Étape 2.1.1
Réécrivez comme .
Étape 2.1.2
Les deux termes étant des carrés parfaits, factorisez à l’aide de la formule de la différence des carrés, où et .
Étape 2.2
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 2.3
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 2.4
Écrivez chaque expression avec un dénominateur commun , en multipliant chacun par un facteur approprié de .
Étape 2.4.1
Multipliez par .
Étape 2.4.2
Multipliez par .
Étape 2.4.3
Réorganisez les facteurs de .
Étape 2.5
Associez les numérateurs sur le dénominateur commun.
Étape 2.6
Associez les numérateurs sur le dénominateur commun.
Étape 2.7
Simplifiez chaque terme.
Étape 2.7.1
Appliquez la propriété distributive.
Étape 2.7.2
Multipliez par .
Étape 2.7.3
Appliquez la propriété distributive.
Étape 2.7.4
Multipliez par .
Étape 2.7.5
Appliquez la propriété distributive.
Étape 2.7.6
Multipliez par .
Étape 2.7.7
Multipliez par .
Étape 2.8
Additionnez et .
Étape 2.9
Soustrayez de .
Étape 2.10
Additionnez et .
Étape 2.11
Additionnez et .
Étape 3
Définissez le dénominateur dans égal à pour déterminer où l’expression est indéfinie.
Étape 4
Étape 4.1
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 4.2
Définissez égal à et résolvez .
Étape 4.2.1
Définissez égal à .
Étape 4.2.2
Soustrayez des deux côtés de l’équation.
Étape 4.3
Définissez égal à et résolvez .
Étape 4.3.1
Définissez égal à .
Étape 4.3.2
Ajoutez aux deux côtés de l’équation.
Étape 4.4
La solution finale est l’ensemble des valeurs qui rendent vraie.
Étape 5
L’équation est indéfinie là où le dénominateur est égal à , l’argument d’une racine carrée est inférieur à ou l’argument d’un logarithme est inférieur ou égal à .
Étape 6