Entrer un problème...
Algèbre Exemples
Étape 1
Étape 1.1
Définissez le radicande dans supérieur ou égal à pour déterminer où l’expression est définie.
Étape 1.2
Soustrayez des deux côtés de l’inégalité.
Étape 1.3
Le domaine est l’ensemble des valeurs de qui rendent l’expression définie.
Notation d’intervalle :
Notation de constructeur d’ensemble :
Notation d’intervalle :
Notation de constructeur d’ensemble :
Étape 2
Étape 2.1
Remplacez la variable par dans l’expression.
Étape 2.2
Simplifiez le résultat.
Étape 2.2.1
La valeur absolue est la distance entre un nombre et zéro. La distance entre et est .
Étape 2.2.2
Additionnez et .
Étape 2.2.3
Réécrivez comme .
Étape 2.2.4
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels positifs.
Étape 2.2.5
Multipliez par .
Étape 2.2.6
La réponse finale est .
Étape 3
Le point final de l’expression du radical est .
Étape 4
Étape 4.1
Remplacez la valeur dans . Dans ce cas, le point est .
Étape 4.1.1
Remplacez la variable par dans l’expression.
Étape 4.1.2
Simplifiez le résultat.
Étape 4.1.2.1
La valeur absolue est la distance entre un nombre et zéro. La distance entre et est .
Étape 4.1.2.2
Additionnez et .
Étape 4.1.2.3
Toute racine de est .
Étape 4.1.2.4
Multipliez par .
Étape 4.1.2.5
La réponse finale est .
Étape 4.2
Remplacez la valeur dans . Dans ce cas, le point est .
Étape 4.2.1
Remplacez la variable par dans l’expression.
Étape 4.2.2
Simplifiez le résultat.
Étape 4.2.2.1
La valeur absolue est la distance entre un nombre et zéro. La distance entre et est .
Étape 4.2.2.2
Multipliez par .
Étape 4.2.2.3
Additionnez et .
Étape 4.2.2.4
La réponse finale est .
Étape 4.3
La racine carrée peut être représentée avec les points autour du sommet
Étape 5