Algèbre Exemples

Résoudre à l’aide de la propriété de la racine carrée -4/3x^2-15=201
Étape 1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Associez et .
Étape 1.2
Déplacez à gauche de .
Étape 2
Déplacez tous les termes ne contenant pas du côté droit de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Ajoutez aux deux côtés de l’équation.
Étape 2.2
Additionnez et .
Étape 3
Multipliez les deux côtés de l’équation par .
Étape 4
Simplifiez les deux côtés de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 4.1.1
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 4.1.1.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 4.1.1.1.1
Placez le signe négatif initial dans dans le numérateur.
Étape 4.1.1.1.2
Placez le signe négatif initial dans dans le numérateur.
Étape 4.1.1.1.3
Factorisez à partir de .
Étape 4.1.1.1.4
Annulez le facteur commun.
Étape 4.1.1.1.5
Réécrivez l’expression.
Étape 4.1.1.2
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 4.1.1.2.1
Factorisez à partir de .
Étape 4.1.1.2.2
Annulez le facteur commun.
Étape 4.1.1.2.3
Réécrivez l’expression.
Étape 4.1.1.3
Multipliez.
Appuyez ici pour voir plus d’étapes...
Étape 4.1.1.3.1
Multipliez par .
Étape 4.1.1.3.2
Multipliez par .
Étape 4.2
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1.1.1
Placez le signe négatif initial dans dans le numérateur.
Étape 4.2.1.1.2
Factorisez à partir de .
Étape 4.2.1.1.3
Annulez le facteur commun.
Étape 4.2.1.1.4
Réécrivez l’expression.
Étape 4.2.1.2
Multipliez par .
Étape 5
Prenez la racine spécifiée des deux côtés de l’équation pour éliminer l’exposant du côté gauche.
Étape 6
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 6.1
Réécrivez comme .
Étape 6.2
Réécrivez comme .
Étape 6.3
Réécrivez comme .
Étape 6.4
Réécrivez comme .
Appuyez ici pour voir plus d’étapes...
Étape 6.4.1
Factorisez à partir de .
Étape 6.4.2
Réécrivez comme .
Étape 6.5
Extrayez les termes de sous le radical.
Étape 6.6
Déplacez à gauche de .
Étape 7
La solution complète est le résultat des parties positive et négative de la solution.
Appuyez ici pour voir plus d’étapes...
Étape 7.1
Commencez par utiliser la valeur positive du pour déterminer la première solution.
Étape 7.2
Ensuite, utilisez la valeur négative du pour déterminer la deuxième solution.
Étape 7.3
La solution complète est le résultat des parties positive et négative de la solution.