Entrer un problème...
Algèbre Exemples
Étape 1
Étape 1.1
Réalisez un produit en croix en définissant le produit du numérateur du côté droit et du dénominateur du côté gauche égal au produit du numérateur du côté gauche et du dénominateur du côté droit.
Étape 1.2
Simplifiez le côté gauche.
Étape 1.2.1
Associez en utilisant la règle de produit pour les radicaux.
Étape 2
Pour retirer le radical du côté gauche de l’équation, élevez au carré les deux côtés de l’équation.
Étape 3
Étape 3.1
Utilisez pour réécrire comme .
Étape 3.2
Simplifiez le côté gauche.
Étape 3.2.1
Simplifiez .
Étape 3.2.1.1
Multipliez les exposants dans .
Étape 3.2.1.1.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 3.2.1.1.2
Annulez le facteur commun de .
Étape 3.2.1.1.2.1
Annulez le facteur commun.
Étape 3.2.1.1.2.2
Réécrivez l’expression.
Étape 3.2.1.2
Appliquez la propriété distributive.
Étape 3.2.1.3
Multipliez par en additionnant les exposants.
Étape 3.2.1.3.1
Déplacez .
Étape 3.2.1.3.2
Multipliez par .
Étape 3.2.1.4
Multipliez par .
Étape 3.2.1.5
Simplifiez
Étape 3.3
Simplifiez le côté droit.
Étape 3.3.1
Un à n’importe quelle puissance est égal à un.
Étape 4
Étape 4.1
Soustrayez des deux côtés de l’équation.
Étape 4.2
Utilisez la formule quadratique pour déterminer les solutions.
Étape 4.3
Remplacez les valeurs , et dans la formule quadratique et résolvez pour .
Étape 4.4
Simplifiez
Étape 4.4.1
Simplifiez le numérateur.
Étape 4.4.1.1
Élevez à la puissance .
Étape 4.4.1.2
Multipliez .
Étape 4.4.1.2.1
Multipliez par .
Étape 4.4.1.2.2
Multipliez par .
Étape 4.4.1.3
Soustrayez de .
Étape 4.4.1.4
Réécrivez comme .
Étape 4.4.1.4.1
Factorisez à partir de .
Étape 4.4.1.4.2
Réécrivez comme .
Étape 4.4.1.5
Extrayez les termes de sous le radical.
Étape 4.4.2
Multipliez par .
Étape 4.4.3
Simplifiez .
Étape 4.4.4
Placez le signe moins devant la fraction.
Étape 4.5
La réponse finale est la combinaison des deux solutions.
Étape 5
Le résultat peut être affiché en différentes formes.
Forme exacte :
Forme décimale :