Entrer un problème...
Algèbre Exemples
Étape 1
Étape 1.1
Déterminer le plus petit dénominateur commun d’une liste d’expressions équivaut à déterminer le plus petit multiple commun des dénominateurs de ces valeurs.
Étape 1.2
Supprimez les parenthèses.
Étape 1.3
Le plus petit multiple commun de toute expression est l’expression.
Étape 2
Étape 2.1
Multipliez chaque terme dans par .
Étape 2.2
Simplifiez le côté gauche.
Étape 2.2.1
Annulez le facteur commun de .
Étape 2.2.1.1
Annulez le facteur commun.
Étape 2.2.1.2
Réécrivez l’expression.
Étape 2.3
Simplifiez le côté droit.
Étape 2.3.1
Simplifiez chaque terme.
Étape 2.3.1.1
Appliquez la propriété distributive.
Étape 2.3.1.2
Multipliez par .
Étape 2.3.1.3
Multipliez par .
Étape 2.3.1.4
Appliquez la propriété distributive.
Étape 2.3.1.5
Multipliez par .
Étape 2.3.2
Associez les termes opposés dans .
Étape 2.3.2.1
Soustrayez de .
Étape 2.3.2.2
Additionnez et .
Étape 3
Étape 3.1
Soustrayez des deux côtés de l’équation.
Étape 3.2
Ajoutez aux deux côtés de l’équation.
Étape 3.3
Associez les termes opposés dans .
Étape 3.3.1
Additionnez et .
Étape 3.3.2
Additionnez et .
Étape 3.4
Factorisez à partir de .
Étape 3.4.1
Factorisez à partir de .
Étape 3.4.2
Factorisez à partir de .
Étape 3.4.3
Factorisez à partir de .
Étape 3.5
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 3.6
Définissez égal à .
Étape 3.7
Définissez égal à et résolvez .
Étape 3.7.1
Définissez égal à .
Étape 3.7.2
Résolvez pour .
Étape 3.7.2.1
Soustrayez des deux côtés de l’équation.
Étape 3.7.2.2
Divisez chaque terme dans par et simplifiez.
Étape 3.7.2.2.1
Divisez chaque terme dans par .
Étape 3.7.2.2.2
Simplifiez le côté gauche.
Étape 3.7.2.2.2.1
La division de deux valeurs négatives produit une valeur positive.
Étape 3.7.2.2.2.2
Divisez par .
Étape 3.7.2.2.3
Simplifiez le côté droit.
Étape 3.7.2.2.3.1
Divisez par .
Étape 3.8
La solution finale est l’ensemble des valeurs qui rendent vraie.