Entrer un problème...
Algèbre Exemples
Étape 1
Étape 1.1
Déterminer le plus petit dénominateur commun d’une liste d’expressions équivaut à déterminer le plus petit multiple commun des dénominateurs de ces valeurs.
Étape 1.2
Le plus petit multiple commun est le plus petit nombre positif dans lequel tous les nombres peuvent être divisés parfaitement.
1. Indiquez les facteurs premiers de chaque nombre.
2. Multipliez chaque facteur le plus grand nombre de fois qu’il apparaît dans un nombre.
Étape 1.3
Le nombre n’est pas un nombre premier car il ne comporte qu’un facteur positif, qui est lui-même.
Pas premier
Étape 1.4
Le plus petit multiple commun de est le résultat de la multiplication de tous les facteurs premiers le plus grand nombre de fois qu’ils apparaissent dans un nombre ou l’autre.
Étape 1.5
Le facteur pour est lui-mĂŞme.
se produit fois.
Étape 1.6
Le facteur pour est lui-mĂŞme.
se produit fois.
Étape 1.7
Le plus petit multiple commun de est le résultat de la multiplication de tous les facteurs le plus grand nombre de fois qu’ils apparaissent dans un terme ou l’autre.
Étape 2
Étape 2.1
Multipliez chaque terme dans par .
Étape 2.2
Simplifiez le côté gauche.
Étape 2.2.1
Simplifiez chaque terme.
Étape 2.2.1.1
Annulez le facteur commun de .
Étape 2.2.1.1.1
Annulez le facteur commun.
Étape 2.2.1.1.2
Réécrivez l’expression.
Étape 2.2.1.2
Appliquez la propriété distributive.
Étape 2.2.1.3
Multipliez par en additionnant les exposants.
Étape 2.2.1.3.1
Déplacez .
Étape 2.2.1.3.2
Multipliez par .
Étape 2.2.1.4
Multipliez par .
Étape 2.2.1.5
Annulez le facteur commun de .
Étape 2.2.1.5.1
Factorisez Ă partir de .
Étape 2.2.1.5.2
Annulez le facteur commun.
Étape 2.2.1.5.3
Réécrivez l’expression.
Étape 2.2.1.6
Appliquez la propriété distributive.
Étape 2.2.1.7
Multipliez par .
Étape 2.2.1.8
Déplacez à gauche de .
Étape 2.2.1.9
Réécrivez comme .
Étape 2.2.2
Simplifiez en ajoutant des termes.
Étape 2.2.2.1
Additionnez et .
Étape 2.2.2.2
Soustrayez de .
Étape 2.3
Simplifiez le côté droit.
Étape 2.3.1
Développez à l’aide de la méthode FOIL.
Étape 2.3.1.1
Appliquez la propriété distributive.
Étape 2.3.1.2
Appliquez la propriété distributive.
Étape 2.3.1.3
Appliquez la propriété distributive.
Étape 2.3.2
Simplifiez et associez les termes similaires.
Étape 2.3.2.1
Simplifiez chaque terme.
Étape 2.3.2.1.1
Multipliez par .
Étape 2.3.2.1.2
Déplacez à gauche de .
Étape 2.3.2.1.3
Réécrivez comme .
Étape 2.3.2.1.4
Multipliez par .
Étape 2.3.2.2
Soustrayez de .
Étape 2.3.3
Multipliez par .
Étape 3
Étape 3.1
Factorisez Ă partir de .
Étape 3.1.1
Factorisez Ă partir de .
Étape 3.1.2
Factorisez Ă partir de .
Étape 3.1.3
Factorisez Ă partir de .
Étape 3.2
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 3.3
Définissez égal à .
Étape 3.4
Définissez égal à et résolvez .
Étape 3.4.1
Définissez égal à .
Étape 3.4.2
Résolvez pour .
Étape 3.4.2.1
Ajoutez aux deux côtés de l’équation.
Étape 3.4.2.2
Divisez chaque terme dans par et simplifiez.
Étape 3.4.2.2.1
Divisez chaque terme dans par .
Étape 3.4.2.2.2
Simplifiez le côté gauche.
Étape 3.4.2.2.2.1
Annulez le facteur commun de .
Étape 3.4.2.2.2.1.1
Annulez le facteur commun.
Étape 3.4.2.2.2.1.2
Divisez par .
Étape 3.5
La solution finale est l’ensemble des valeurs qui rendent vraie.
Étape 4
Le résultat peut être affiché en différentes formes.
Forme exacte :
Forme décimale :
Forme de nombre mixte :