Entrer un problème...
Algèbre Exemples
Étape 1
Étape 1.1
Déterminer le plus petit dénominateur commun d’une liste d’expressions équivaut à déterminer le plus petit multiple commun des dénominateurs de ces valeurs.
Étape 1.2
Le plus petit multiple commun de toute expression est l’expression.
Étape 2
Étape 2.1
Multipliez chaque terme dans par .
Étape 2.2
Simplifiez le côté gauche.
Étape 2.2.1
Simplifiez chaque terme.
Étape 2.2.1.1
Multipliez par .
Étape 2.2.1.2
Annulez le facteur commun de .
Étape 2.2.1.2.1
Annulez le facteur commun.
Étape 2.2.1.2.2
Réécrivez l’expression.
Étape 3
Étape 3.1
Soustrayez des deux côtés de l’inégalité.
Étape 3.2
Convertissez l’inégalité en une équation.
Étape 3.3
Factorisez en utilisant la règle du carré parfait.
Étape 3.3.1
Réorganisez les termes.
Étape 3.3.2
Réécrivez comme .
Étape 3.3.3
Vérifiez que le terme central est le double du produit des nombres élevés au carré dans le premier terme et le troisième terme.
Étape 3.3.4
Réécrivez le polynôme.
Étape 3.3.5
Factorisez en utilisant la règle trinomiale du carré parfait , où et .
Étape 3.4
Définissez le égal à .
Étape 3.5
Ajoutez aux deux côtés de l’équation.
Étape 4
Étape 4.1
Définissez le dénominateur dans égal à pour déterminer où l’expression est indéfinie.
Étape 4.2
Le domaine est l’ensemble des valeurs de qui rendent l’expression définie.
Étape 5
Utilisez chaque racine pour créer des intervalles de test.
Étape 6
Étape 6.1
Testez une valeur sur l’intervalle pour voir si elle rend vraie l’inégalité.
Étape 6.1.1
Choisissez une valeur sur l’intervalle et constatez si cette valeur rend vraie l’inégalité d’origine.
Étape 6.1.2
Remplacez par dans l’inégalité d’origine.
Étape 6.1.3
Le côté gauche est inférieur au côté droit , ce qui signifie que l’énoncé donné est faux.
Faux
Faux
Étape 6.2
Testez une valeur sur l’intervalle pour voir si elle rend vraie l’inégalité.
Étape 6.2.1
Choisissez une valeur sur l’intervalle et constatez si cette valeur rend vraie l’inégalité d’origine.
Étape 6.2.2
Remplacez par dans l’inégalité d’origine.
Étape 6.2.3
Le côté gauche est supérieur au côté droit , ce qui signifie que l’énoncé donné est toujours vrai.
Vrai
Vrai
Étape 6.3
Testez une valeur sur l’intervalle pour voir si elle rend vraie l’inégalité.
Étape 6.3.1
Choisissez une valeur sur l’intervalle et constatez si cette valeur rend vraie l’inégalité d’origine.
Étape 6.3.2
Remplacez par dans l’inégalité d’origine.
Étape 6.3.3
Le côté gauche est supérieur au côté droit , ce qui signifie que l’énoncé donné est toujours vrai.
Vrai
Vrai
Étape 6.4
Comparez les intervalles afin de déterminer lesquels satisfont à l’inégalité d’origine.
Faux
Vrai
Vrai
Faux
Vrai
Vrai
Étape 7
La solution se compose de tous les intervalles vrais.
ou
Étape 8
Associez les intervalles.
Étape 9
Le résultat peut être affiché en différentes formes.
Forme d’inégalité :
Notation d’intervalle :
Étape 10