Algèbre Exemples

Resolva para x 1-1/(3x^(2/3))=0
Étape 1
Soustrayez des deux côtés de l’équation.
Étape 2
Déterminez le plus petit dénominateur commun des termes dans l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Déterminer le plus petit dénominateur commun d’une liste d’expressions équivaut à déterminer le plus petit multiple commun des dénominateurs de ces valeurs.
Étape 2.2
Le plus petit multiple commun de toute expression est l’expression.
Étape 3
Multiplier chaque terme dans par afin d’éliminer les fractions.
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Multipliez chaque terme dans par .
Étape 3.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1.1
Placez le signe négatif initial dans dans le numérateur.
Étape 3.2.1.2
Annulez le facteur commun.
Étape 3.2.1.3
Réécrivez l’expression.
Étape 3.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 3.3.1
Multipliez par .
Étape 4
Résolvez l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Réécrivez l’équation comme .
Étape 4.2
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1
Divisez chaque terme dans par .
Étape 4.2.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.2.1
Annulez le facteur commun.
Étape 4.2.2.2
Divisez par .
Étape 4.2.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.3.1
La division de deux valeurs négatives produit une valeur positive.
Étape 4.3
Élevez chaque côté de l’équation à la puissance pour éliminer l’exposant fractionnel du côté gauche.
Étape 4.4
Simplifiez l’exposant.
Appuyez ici pour voir plus d’étapes...
Étape 4.4.1
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 4.4.1.1
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 4.4.1.1.1
Multipliez les exposants dans .
Appuyez ici pour voir plus d’étapes...
Étape 4.4.1.1.1.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 4.4.1.1.1.2
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 4.4.1.1.1.2.1
Annulez le facteur commun.
Étape 4.4.1.1.1.2.2
Réécrivez l’expression.
Étape 4.4.1.1.1.3
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 4.4.1.1.1.3.1
Annulez le facteur commun.
Étape 4.4.1.1.1.3.2
Réécrivez l’expression.
Étape 4.4.1.1.2
Simplifiez
Étape 4.4.2
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 4.4.2.1
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 4.4.2.1.1
Appliquez la règle de produit à .
Étape 4.4.2.1.2
Un à n’importe quelle puissance est égal à un.
Étape 4.5
La solution complète est le résultat des parties positive et négative de la solution.
Appuyez ici pour voir plus d’étapes...
Étape 4.5.1
Commencez par utiliser la valeur positive du pour déterminer la première solution.
Étape 4.5.2
Ensuite, utilisez la valeur négative du pour déterminer la deuxième solution.
Étape 4.5.3
La solution complète est le résultat des parties positive et négative de la solution.
Étape 5
Le résultat peut être affiché en différentes formes.
Forme exacte :
Forme décimale :