Entrer un problème...
Algèbre Exemples
Étape 1
Divisez chaque terme dans l’équation par .
Étape 2
Étape 2.1
Annulez le facteur commun.
Étape 2.2
Divisez par .
Étape 3
Convertissez de à .
Étape 4
Réécrivez l’équation comme .
Étape 5
Prenez la tangente inverse des deux côtés de l’équation pour extraire de l’intérieur de la tangente.
Étape 6
Étape 6.1
Évaluez .
Étape 7
Étape 7.1
Soustrayez des deux côtés de l’équation.
Étape 7.2
Soustrayez de .
Étape 8
Étape 8.1
Divisez chaque terme dans par .
Étape 8.2
Simplifiez le côté gauche.
Étape 8.2.1
Annulez le facteur commun de .
Étape 8.2.1.1
Annulez le facteur commun.
Étape 8.2.1.2
Divisez par .
Étape 8.3
Simplifiez le côté droit.
Étape 8.3.1
Divisez par .
Étape 9
La fonction tangente est positive dans les premier et troisième quadrants. Pour déterminer la deuxième solution, ajoutez l’angle de référence de pour déterminer la solution dans le quatrième quadrant.
Étape 10
Étape 10.1
Additionnez et .
Étape 10.2
Déplacez tous les termes ne contenant pas du côté droit de l’équation.
Étape 10.2.1
Soustrayez des deux côtés de l’équation.
Étape 10.2.2
Soustrayez de .
Étape 10.3
Divisez chaque terme dans par et simplifiez.
Étape 10.3.1
Divisez chaque terme dans par .
Étape 10.3.2
Simplifiez le côté gauche.
Étape 10.3.2.1
Annulez le facteur commun de .
Étape 10.3.2.1.1
Annulez le facteur commun.
Étape 10.3.2.1.2
Divisez par .
Étape 10.3.3
Simplifiez le côté droit.
Étape 10.3.3.1
Divisez par .
Étape 11
Étape 11.1
La période de la fonction peut être calculée en utilisant .
Étape 11.2
Remplacez par dans la formule pour la période.
Étape 11.3
La valeur absolue est la distance entre un nombre et zéro. La distance entre et est .
Étape 12
Étape 12.1
Ajoutez à pour déterminer l’angle positif.
Étape 12.2
Soustrayez de .
Étape 12.3
Indiquez les nouveaux angles.
Étape 13
La période de la fonction est si bien que les valeurs se répètent tous les radians dans les deux sens.
, pour tout entier
Étape 14
Consolidez et en .
, pour tout entier