Algèbre Exemples

Resolva para x base logarithmique 2x de 2x^2+6x-4=2
Étape 1
Réécrivez en forme exponentielle en utilisant la définition d’un logarithme. Si et sont des nombres réels positifs et , alors est équivalent à .
Étape 2
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Comme est du côté droit de l’équation, inversez les côtés afin de le placer du côté gauche de l’équation.
Étape 2.2
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1
Appliquez la règle de produit à .
Étape 2.2.2
Élevez à la puissance .
Étape 2.3
Déplacez tous les termes contenant du côté gauche de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 2.3.1
Soustrayez des deux côtés de l’équation.
Étape 2.3.2
Soustrayez de .
Étape 2.4
Factorisez le côté gauche de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 2.4.1
Factorisez à partir de .
Appuyez ici pour voir plus d’étapes...
Étape 2.4.1.1
Factorisez à partir de .
Étape 2.4.1.2
Factorisez à partir de .
Étape 2.4.1.3
Factorisez à partir de .
Étape 2.4.1.4
Factorisez à partir de .
Étape 2.4.1.5
Factorisez à partir de .
Étape 2.4.2
Factorisez.
Appuyez ici pour voir plus d’étapes...
Étape 2.4.2.1
Factorisez à l’aide de la méthode AC.
Appuyez ici pour voir plus d’étapes...
Étape 2.4.2.1.1
Étudiez la forme . Déterminez une paire d’entiers dont le produit est et dont la somme est . Dans ce cas, dont le produit est et dont la somme est .
Étape 2.4.2.1.2
Écrivez la forme factorisée avec ces entiers.
Étape 2.4.2.2
Supprimez les parenthèses inutiles.
Étape 2.5
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 2.6
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 2.6.1
Définissez égal à .
Étape 2.6.2
Ajoutez aux deux côtés de l’équation.
Étape 2.7
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 2.7.1
Définissez égal à .
Étape 2.7.2
Ajoutez aux deux côtés de l’équation.
Étape 2.8
La solution finale est l’ensemble des valeurs qui rendent vraie.