Entrer un problème...
Algèbre Exemples
Étape 1
Soustrayez des deux côtés de l’inégalité.
Étape 2
Étape 2.1
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 2.2
Associez et .
Étape 2.3
Associez les numérateurs sur le dénominateur commun.
Étape 2.4
Simplifiez le numérateur.
Étape 2.4.1
Appliquez la propriété distributive.
Étape 2.4.2
Multipliez par .
Étape 2.4.3
Remettez les termes dans l’ordre.
Étape 2.5
Factorisez à partir de .
Étape 2.6
Factorisez à partir de .
Étape 2.7
Factorisez à partir de .
Étape 2.8
Réécrivez comme .
Étape 2.9
Factorisez à partir de .
Étape 2.10
Réécrivez comme .
Étape 2.11
Placez le signe moins devant la fraction.
Étape 3
Déterminez toutes les valeurs où l’expression passe de négative à positive en définissant chaque facteur égal à et en résolvant.
Étape 4
Utilisez la formule quadratique pour déterminer les solutions.
Étape 5
Remplacez les valeurs , et dans la formule quadratique et résolvez pour .
Étape 6
Étape 6.1
Simplifiez le numérateur.
Étape 6.1.1
Élevez à la puissance .
Étape 6.1.2
Multipliez .
Étape 6.1.2.1
Multipliez par .
Étape 6.1.2.2
Multipliez par .
Étape 6.1.3
Soustrayez de .
Étape 6.1.4
Réécrivez comme .
Étape 6.1.5
Réécrivez comme .
Étape 6.1.6
Réécrivez comme .
Étape 6.2
Multipliez par .
Étape 7
La réponse finale est la combinaison des deux solutions.
Étape 8
Soustrayez des deux côtés de l’équation.
Étape 9
Prenez la racine spécifiée des deux côtés de l’équation pour éliminer l’exposant du côté gauche.
Étape 10
Réécrivez comme .
Étape 11
Étape 11.1
Commencez par utiliser la valeur positive du pour déterminer la première solution.
Étape 11.2
Ensuite, utilisez la valeur négative du pour déterminer la deuxième solution.
Étape 11.3
La solution complète est le résultat des parties positive et négative de la solution.
Étape 12
Résolvez pour chaque facteur afin de déterminer les valeurs où l’expression de la valeur absolue passe de négative à positive.
Étape 13
Le coefficient directeur ne peut pas être déterminé car n’est pas un polynôme.
Pas un polynôme
Étape 14
Comme il n’y a pas d’abscisse à l’origine réelle et comme le coefficient directeur est positif, la parabole ouvre vers le haut et est toujours supérieur à .
Aucune solution