Algèbre Exemples

Tracer x^2y-x^2+4y=0
Étape 1
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Ajoutez aux deux côtés de l’équation.
Étape 1.2
Factorisez à partir de .
Appuyez ici pour voir plus d’étapes...
Étape 1.2.1
Factorisez à partir de .
Étape 1.2.2
Factorisez à partir de .
Étape 1.2.3
Factorisez à partir de .
Étape 1.3
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 1.3.1
Divisez chaque terme dans par .
Étape 1.3.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 1.3.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 1.3.2.1.1
Annulez le facteur commun.
Étape 1.3.2.1.2
Divisez par .
Étape 2
Déterminez où l’expression est indéfinie.
Le domaine de l’expression est l’ensemble des nombres réels excepté là où l’expression est indéfinie. Dans ce cas, aucun nombre réel ne rend l’expression indéfinie.
Étape 3
Les asymptotes verticales se trouvent dans des zones de discontinuité infinie.
Aucune asymptote verticale
Étape 4
Étudiez la fonction rationnelle est le degré du numérateur et est le degré du dénominateur.
1. Si , alors l’abscisse, , est l’asymptote horizontale.
2. Si , alors l’asymptote horizontale est la droite .
3. Si , alors il n’y a pas d’asymptote horizontale (il existe une asymptote oblique).
Étape 5
Déterminez et .
Étape 6
Comme , l’asymptote horizontale est la droite et .
Étape 7
Il n’y a pas d’asymptote oblique car le degré du numérateur est inférieur ou égal au degré du dénominateur.
Aucune asymptote oblique
Étape 8
C’est l’ensemble de toutes les asymptotes.
Aucune asymptote verticale
Asymptotes horizontales :
Aucune asymptote oblique
Étape 9