Entrer un problème...
Algèbre Exemples
Étape 1
Étape 1.1
Factorisez à partir de .
Étape 1.1.1
Factorisez à partir de .
Étape 1.1.2
Factorisez à partir de .
Étape 1.1.3
Factorisez à partir de .
Étape 1.1.4
Factorisez à partir de .
Étape 1.1.5
Factorisez à partir de .
Étape 1.1.6
Factorisez à partir de .
Étape 1.1.7
Factorisez à partir de .
Étape 1.2
Factorisez le plus grand facteur commun à partir de chaque groupe.
Étape 1.2.1
Regroupez les deux premiers termes et les deux derniers termes.
Étape 1.2.2
Factorisez le plus grand facteur commun à partir de chaque groupe.
Étape 1.3
Factorisez le polynôme en factorisant le plus grand facteur commun, .
Étape 1.4
Réécrivez comme .
Étape 1.5
Factorisez.
Étape 1.5.1
Factorisez.
Étape 1.5.1.1
Les deux termes étant des carrés parfaits, factorisez à l’aide de la formule de la différence des carrés, où et .
Étape 1.5.1.2
Supprimez les parenthèses inutiles.
Étape 1.5.2
Supprimez les parenthèses inutiles.
Étape 2
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 3
Étape 3.1
Définissez égal à .
Étape 3.2
Résolvez pour .
Étape 3.2.1
Prenez la racine spécifiée des deux côtés de l’équation pour éliminer l’exposant du côté gauche.
Étape 3.2.2
Simplifiez .
Étape 3.2.2.1
Réécrivez comme .
Étape 3.2.2.2
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels.
Étape 4
Étape 4.1
Définissez égal à .
Étape 4.2
Résolvez pour .
Étape 4.2.1
Soustrayez des deux côtés de l’équation.
Étape 4.2.2
Divisez chaque terme dans par et simplifiez.
Étape 4.2.2.1
Divisez chaque terme dans par .
Étape 4.2.2.2
Simplifiez le côté gauche.
Étape 4.2.2.2.1
Annulez le facteur commun de .
Étape 4.2.2.2.1.1
Annulez le facteur commun.
Étape 4.2.2.2.1.2
Divisez par .
Étape 4.2.2.3
Simplifiez le côté droit.
Étape 4.2.2.3.1
La division de deux valeurs négatives produit une valeur positive.
Étape 5
Étape 5.1
Définissez égal à .
Étape 5.2
Soustrayez des deux côtés de l’équation.
Étape 6
Étape 6.1
Définissez égal à .
Étape 6.2
Ajoutez aux deux côtés de l’équation.
Étape 7
La solution finale est l’ensemble des valeurs qui rendent vraie.
Étape 8
Le résultat peut être affiché en différentes formes.
Forme exacte :
Forme décimale :
Forme de nombre mixte :