Algèbre Exemples

Simplifier ((x^2)/9-1)/((x-6)/9+1/x)
Étape 1
Multipliez le numérateur et le dénominateur de la fraction par .
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Multipliez par .
Étape 1.2
Associez.
Étape 2
Appliquez la propriété distributive.
Étape 3
Simplifiez en annulant.
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 3.1.1
Factorisez à partir de .
Étape 3.1.2
Annulez le facteur commun.
Étape 3.1.3
Réécrivez l’expression.
Étape 3.2
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1
Multipliez par .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1.1
Élevez à la puissance .
Étape 3.2.1.2
Utilisez la règle de puissance pour associer des exposants.
Étape 3.2.2
Additionnez et .
Étape 3.3
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 3.3.1
Factorisez à partir de .
Étape 3.3.2
Annulez le facteur commun.
Étape 3.3.3
Réécrivez l’expression.
Étape 3.4
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 3.4.1
Factorisez à partir de .
Étape 3.4.2
Annulez le facteur commun.
Étape 3.4.3
Réécrivez l’expression.
Étape 4
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Factorisez à partir de .
Appuyez ici pour voir plus d’étapes...
Étape 4.1.1
Factorisez à partir de .
Étape 4.1.2
Factorisez à partir de .
Étape 4.1.3
Factorisez à partir de .
Étape 4.2
Multipliez par .
Étape 4.3
Réécrivez en forme factorisée.
Appuyez ici pour voir plus d’étapes...
Étape 4.3.1
Réécrivez comme .
Étape 4.3.2
Les deux termes étant des carrés parfaits, factorisez à l’aide de la formule de la différence des carrés, et .
Étape 5
Simplifiez le dénominateur.
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Appliquez la propriété distributive.
Étape 5.2
Multipliez par .
Étape 5.3
Déplacez à gauche de .
Étape 5.4
Factorisez en utilisant la règle du carré parfait.
Appuyez ici pour voir plus d’étapes...
Étape 5.4.1
Réécrivez comme .
Étape 5.4.2
Vérifiez que le terme central est le double du produit des nombres élevés au carré dans le premier terme et le troisième terme.
Étape 5.4.3
Réécrivez le polynôme.
Étape 5.4.4
Factorisez en utilisant la règle trinomiale du carré parfait , où et .
Étape 6
Annulez le facteur commun à et .
Appuyez ici pour voir plus d’étapes...
Étape 6.1
Factorisez à partir de .
Étape 6.2
Annulez les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 6.2.1
Factorisez à partir de .
Étape 6.2.2
Annulez le facteur commun.
Étape 6.2.3
Réécrivez l’expression.