Entrer un problème...
Algèbre Exemples
Étape 1
Ajoutez aux deux côtés de l’équation.
Étape 2
Additionnez et .
Étape 3
Étape 3.1
Divisez chaque terme dans par .
Étape 3.2
Simplifiez le côté gauche.
Étape 3.2.1
Annulez le facteur commun de .
Étape 3.2.1.1
Annulez le facteur commun.
Étape 3.2.1.2
Divisez par .
Étape 4
Prenez la racine spécifiée des deux côtés de l’équation pour éliminer l’exposant du côté gauche.
Étape 5
Étape 5.1
Réécrivez comme .
Étape 5.2
Simplifiez le numérateur.
Étape 5.2.1
Réécrivez comme .
Étape 5.2.2
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels positifs.
Étape 5.3
Simplifiez le dénominateur.
Étape 5.3.1
Réécrivez comme .
Étape 5.3.2
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels positifs.
Étape 6
Étape 6.1
Commencez par utiliser la valeur positive du pour déterminer la première solution.
Étape 6.2
Déplacez tous les termes ne contenant pas du côté droit de l’équation.
Étape 6.2.1
Soustrayez des deux côtés de l’équation.
Étape 6.2.2
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 6.2.3
Associez et .
Étape 6.2.4
Associez les numérateurs sur le dénominateur commun.
Étape 6.2.5
Simplifiez le numérateur.
Étape 6.2.5.1
Multipliez par .
Étape 6.2.5.2
Soustrayez de .
Étape 6.2.6
Placez le signe moins devant la fraction.
Étape 6.3
Divisez chaque terme dans par et simplifiez.
Étape 6.3.1
Divisez chaque terme dans par .
Étape 6.3.2
Simplifiez le côté gauche.
Étape 6.3.2.1
Annulez le facteur commun de .
Étape 6.3.2.1.1
Annulez le facteur commun.
Étape 6.3.2.1.2
Divisez par .
Étape 6.3.3
Simplifiez le côté droit.
Étape 6.3.3.1
Multipliez le numérateur par la réciproque du dénominateur.
Étape 6.3.3.2
Placez le signe moins devant la fraction.
Étape 6.3.3.3
Multipliez .
Étape 6.3.3.3.1
Multipliez par .
Étape 6.3.3.3.2
Multipliez par .
Étape 6.3.3.3.3
Multipliez par .
Étape 6.3.3.3.4
Multipliez par .
Étape 6.4
Ensuite, utilisez la valeur négative du pour déterminer la deuxième solution.
Étape 6.5
Déplacez tous les termes ne contenant pas du côté droit de l’équation.
Étape 6.5.1
Soustrayez des deux côtés de l’équation.
Étape 6.5.2
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 6.5.3
Associez et .
Étape 6.5.4
Associez les numérateurs sur le dénominateur commun.
Étape 6.5.5
Simplifiez le numérateur.
Étape 6.5.5.1
Multipliez par .
Étape 6.5.5.2
Soustrayez de .
Étape 6.5.6
Placez le signe moins devant la fraction.
Étape 6.6
Divisez chaque terme dans par et simplifiez.
Étape 6.6.1
Divisez chaque terme dans par .
Étape 6.6.2
Simplifiez le côté gauche.
Étape 6.6.2.1
Annulez le facteur commun de .
Étape 6.6.2.1.1
Annulez le facteur commun.
Étape 6.6.2.1.2
Divisez par .
Étape 6.6.3
Simplifiez le côté droit.
Étape 6.6.3.1
Multipliez le numérateur par la réciproque du dénominateur.
Étape 6.6.3.2
Placez le signe moins devant la fraction.
Étape 6.6.3.3
Multipliez .
Étape 6.6.3.3.1
Multipliez par .
Étape 6.6.3.3.2
Multipliez par .
Étape 6.6.3.3.3
Multipliez par .
Étape 6.6.3.3.4
Multipliez par .
Étape 6.7
La solution complète est le résultat des parties positive et négative de la solution.
Étape 7
Le résultat peut être affiché en différentes formes.
Forme exacte :
Forme décimale :
Forme de nombre mixte :