Algèbre Exemples

Resolva a Inequação para x 12/(x^2+2x)<3/(x^2+4x+4)
Étape 1
Multipliez les deux côtés par .
Étape 2
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 2.1.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 2.1.1.1
Annulez le facteur commun.
Étape 2.1.1.2
Réécrivez l’expression.
Étape 2.2
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1.1
Factorisez en utilisant la règle du carré parfait.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1.1.1
Réécrivez comme .
Étape 2.2.1.1.2
Vérifiez que le terme central est le double du produit des nombres élevés au carré dans le premier terme et le troisième terme.
Étape 2.2.1.1.3
Réécrivez le polynôme.
Étape 2.2.1.1.4
Factorisez en utilisant la règle trinomiale du carré parfait , où et .
Étape 2.2.1.2
Multipliez par .
Étape 2.2.1.3
Factorisez à partir de .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1.3.1
Factorisez à partir de .
Étape 2.2.1.3.2
Factorisez à partir de .
Étape 2.2.1.3.3
Factorisez à partir de .
Étape 2.2.1.4
Annulez le facteur commun à et .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1.4.1
Factorisez à partir de .
Étape 2.2.1.4.2
Annulez les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1.4.2.1
Factorisez à partir de .
Étape 2.2.1.4.2.2
Annulez le facteur commun.
Étape 2.2.1.4.2.3
Réécrivez l’expression.
Étape 3
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Réécrivez l’équation comme .
Étape 3.2
Déterminez le plus petit dénominateur commun des termes dans l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1
Déterminer le plus petit dénominateur commun d’une liste d’expressions équivaut à déterminer le plus petit multiple commun des dénominateurs de ces valeurs.
Étape 3.2.2
Supprimez les parenthèses.
Étape 3.2.3
Le plus petit multiple commun de toute expression est l’expression.
Étape 3.3
Multiplier chaque terme dans par afin d’éliminer les fractions.
Appuyez ici pour voir plus d’étapes...
Étape 3.3.1
Multipliez chaque terme dans par .
Étape 3.3.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 3.3.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 3.3.2.1.1
Annulez le facteur commun.
Étape 3.3.2.1.2
Réécrivez l’expression.
Étape 3.3.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 3.3.3.1
Appliquez la propriété distributive.
Étape 3.3.3.2
Multipliez par .
Étape 3.4
Résolvez l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 3.4.1
Déplacez tous les termes contenant du côté gauche de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 3.4.1.1
Soustrayez des deux côtés de l’équation.
Étape 3.4.1.2
Soustrayez de .
Étape 3.4.2
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 3.4.2.1
Divisez chaque terme dans par .
Étape 3.4.2.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 3.4.2.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 3.4.2.2.1.1
Annulez le facteur commun.
Étape 3.4.2.2.1.2
Divisez par .
Étape 3.4.2.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 3.4.2.3.1
Annulez le facteur commun à et .
Appuyez ici pour voir plus d’étapes...
Étape 3.4.2.3.1.1
Factorisez à partir de .
Étape 3.4.2.3.1.2
Annulez les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 3.4.2.3.1.2.1
Factorisez à partir de .
Étape 3.4.2.3.1.2.2
Annulez le facteur commun.
Étape 3.4.2.3.1.2.3
Réécrivez l’expression.
Étape 3.4.2.3.2
Placez le signe moins devant la fraction.
Étape 4
Déterminez le domaine de .
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Définissez le dénominateur dans égal à pour déterminer où l’expression est indéfinie.
Étape 4.2
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 4.2.2
Définissez égal à .
Étape 4.2.3
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 4.2.3.1
Définissez égal à .
Étape 4.2.3.2
Soustrayez des deux côtés de l’équation.
Étape 4.2.4
La solution finale est l’ensemble des valeurs qui rendent vraie.
Étape 4.3
Définissez le dénominateur dans égal à pour déterminer où l’expression est indéfinie.
Étape 4.4
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 4.4.1
Définissez le égal à .
Étape 4.4.2
Soustrayez des deux côtés de l’équation.
Étape 4.5
Le domaine est l’ensemble des valeurs de qui rendent l’expression définie.
Étape 5
Utilisez chaque racine pour créer des intervalles de test.
Étape 6
Choisissez une valeur de test depuis chaque intervalle et placez cette valeur dans l’inégalité d’origine afin de déterminer quels intervalles satisfont à l’inégalité.
Appuyez ici pour voir plus d’étapes...
Étape 6.1
Testez une valeur sur l’intervalle pour voir si elle rend vraie l’inégalité.
Appuyez ici pour voir plus d’étapes...
Étape 6.1.1
Choisissez une valeur sur l’intervalle et constatez si cette valeur rend vraie l’inégalité d’origine.
Étape 6.1.2
Remplacez par dans l’inégalité d’origine.
Étape 6.1.3
Le côté gauche n’est pas inférieur au côté droit , ce qui signifie que l’énoncé donné est faux.
False
False
Étape 6.2
Testez une valeur sur l’intervalle pour voir si elle rend vraie l’inégalité.
Appuyez ici pour voir plus d’étapes...
Étape 6.2.1
Choisissez une valeur sur l’intervalle et constatez si cette valeur rend vraie l’inégalité d’origine.
Étape 6.2.2
Remplacez par dans l’inégalité d’origine.
Étape 6.2.3
Le côté gauche est inférieur au côté droit , ce qui signifie que l’énoncé donné est toujours vrai.
True
True
Étape 6.3
Testez une valeur sur l’intervalle pour voir si elle rend vraie l’inégalité.
Appuyez ici pour voir plus d’étapes...
Étape 6.3.1
Choisissez une valeur sur l’intervalle et constatez si cette valeur rend vraie l’inégalité d’origine.
Étape 6.3.2
Remplacez par dans l’inégalité d’origine.
Étape 6.3.3
Le côté gauche est inférieur au côté droit , ce qui signifie que l’énoncé donné est toujours vrai.
True
True
Étape 6.4
Testez une valeur sur l’intervalle pour voir si elle rend vraie l’inégalité.
Appuyez ici pour voir plus d’étapes...
Étape 6.4.1
Choisissez une valeur sur l’intervalle et constatez si cette valeur rend vraie l’inégalité d’origine.
Étape 6.4.2
Remplacez par dans l’inégalité d’origine.
Étape 6.4.3
Le côté gauche n’est pas inférieur au côté droit , ce qui signifie que l’énoncé donné est faux.
False
False
Étape 6.5
Comparez les intervalles afin de déterminer lesquels satisfont à l’inégalité d’origine.
Faux
Vrai
Vrai
Faux
Faux
Vrai
Vrai
Faux
Étape 7
La solution se compose de tous les intervalles vrais.
ou
Étape 8
Le résultat peut être affiché en différentes formes.
Forme d’inégalité :
Notation d’intervalle :
Étape 9