Entrer un problème...
Algèbre Exemples
?
Étape 1
Réécrivez l’équation comme .
Étape 2
Étape 2.1
Simplifiez .
Étape 2.1.1
Simplifiez en déplaçant dans le logarithme.
Étape 2.1.2
Appliquez la règle de produit à .
Étape 2.1.3
Élevez à la puissance .
Étape 3
Étape 3.1
Simplifiez .
Étape 3.1.1
Simplifiez chaque terme.
Étape 3.1.1.1
Simplifiez en déplaçant dans le logarithme.
Étape 3.1.1.2
Élevez à la puissance .
Étape 3.1.2
Utilisez la propriété du produit des logarithmes, .
Étape 3.1.3
Multipliez par .
Étape 4
Pour que l’équation soit égale, l’argument des logarithmes des deux côtés de l’équation doit être égal.
Étape 5
Étape 5.1
Divisez chaque terme dans par et simplifiez.
Étape 5.1.1
Divisez chaque terme dans par .
Étape 5.1.2
Simplifiez le côté gauche.
Étape 5.1.2.1
Annulez le facteur commun de .
Étape 5.1.2.1.1
Annulez le facteur commun.
Étape 5.1.2.1.2
Divisez par .
Étape 5.1.3
Simplifiez le côté droit.
Étape 5.1.3.1
Divisez par .
Étape 5.2
Prenez la racine spécifiée des deux côtés de l’équation pour éliminer l’exposant du côté gauche.
Étape 5.3
Simplifiez .
Étape 5.3.1
Réécrivez comme .
Étape 5.3.2
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels positifs.
Étape 5.4
La solution complète est le résultat des parties positive et négative de la solution.
Étape 5.4.1
Commencez par utiliser la valeur positive du pour déterminer la première solution.
Étape 5.4.2
Ensuite, utilisez la valeur négative du pour déterminer la deuxième solution.
Étape 5.4.3
La solution complète est le résultat des parties positive et négative de la solution.
Étape 6
Excluez les solutions qui ne rendent pas vrai.