Algèbre Exemples

Résoudre en utilisant la formule quadratique 2/p+3/(p+1)=5
Étape 1
Soustrayez des deux côtés de l’équation.
Étape 2
Déterminez le plus petit dénominateur commun des termes dans l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Déterminer le plus petit dénominateur commun d’une liste d’expressions équivaut à déterminer le plus petit multiple commun des dénominateurs de ces valeurs.
Étape 2.2
Comme contiennent des nombres et des variables, quatre étapes sont nécessaires pour déterminer le plus petit multiple commun. Déterminez le plus petit multiple commun pour les parties numériques, variables et variables composées. Ensuite, multipliez toutes les valeurs entre elles.
Les étapes pour déterminer le plus petit multiple commun pour sont :
1. Déterminez le plus petit multiple commun pour la partie numérique .
2. Déterminez le plus petit multiple commun pour la partie variable .
3. Déterminez le plus petit multiple commun pour la partie variable composée .
4. Multipliez tous les plus petits multiples communs entre eux.
Étape 2.3
Le plus petit multiple commun est le plus petit nombre positif dans lequel tous les nombres peuvent être divisés parfaitement.
1. Indiquez les facteurs premiers de chaque nombre.
2. Multipliez chaque facteur le plus grand nombre de fois qu’il apparaît dans un nombre.
Étape 2.4
Le nombre n’est pas un nombre premier car il ne comporte qu’un facteur positif, qui est lui-même.
Pas premier
Étape 2.5
Le plus petit multiple commun de est le résultat de la multiplication de tous les facteurs premiers le plus grand nombre de fois qu’ils apparaissent dans un nombre ou l’autre.
Étape 2.6
Le facteur pour est lui-même.
se produit fois.
Étape 2.7
Le plus petit multiple commun de est le résultat de la multiplication de tous les facteurs premiers le plus grand nombre de fois qu’ils apparaissent dans un terme ou l’autre.
Étape 2.8
Le facteur pour est lui-même.
se produit fois.
Étape 2.9
Le plus petit multiple commun de est le résultat de la multiplication de tous les facteurs le plus grand nombre de fois qu’ils apparaissent dans un terme ou l’autre.
Étape 2.10
Le plus petit multiple commun de certains nombres est le plus petit nombre dont les nombres sont des facteurs.
Étape 3
Multiplier chaque terme dans par afin d’éliminer les fractions.
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Multipliez chaque terme dans par .
Étape 3.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1.1.1
Annulez le facteur commun.
Étape 3.2.1.1.2
Réécrivez l’expression.
Étape 3.2.1.2
Appliquez la propriété distributive.
Étape 3.2.1.3
Multipliez par .
Étape 3.2.1.4
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1.4.1
Factorisez à partir de .
Étape 3.2.1.4.2
Annulez le facteur commun.
Étape 3.2.1.4.3
Réécrivez l’expression.
Étape 3.2.1.5
Appliquez la propriété distributive.
Étape 3.2.1.6
Multipliez par .
Étape 3.2.1.7
Multipliez par .
Étape 3.2.1.8
Appliquez la propriété distributive.
Étape 3.2.2
Simplifiez en ajoutant des termes.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.2.1
Additionnez et .
Étape 3.2.2.2
Associez les termes opposés dans .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.2.2.1
Soustrayez de .
Étape 3.2.2.2.2
Additionnez et .
Étape 3.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 3.3.1
Appliquez la propriété distributive.
Étape 3.3.2
Simplifiez l’expression.
Appuyez ici pour voir plus d’étapes...
Étape 3.3.2.1
Multipliez par .
Étape 3.3.2.2
Multipliez par .
Étape 3.3.2.3
Multipliez par .
Étape 4
Résolvez l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Soustrayez des deux côtés de l’équation.
Étape 4.2
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1
Divisez chaque terme dans par .
Étape 4.2.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 4.2.2.1.1
Annulez le facteur commun.
Étape 4.2.2.1.2
Divisez par .
Étape 4.2.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.3.1
La division de deux valeurs négatives produit une valeur positive.
Étape 4.3
Prenez la racine spécifiée des deux côtés de l’équation pour éliminer l’exposant du côté gauche.
Étape 4.4
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 4.4.1
Réécrivez comme .
Étape 4.4.2
Multipliez par .
Étape 4.4.3
Associez et simplifiez le dénominateur.
Appuyez ici pour voir plus d’étapes...
Étape 4.4.3.1
Multipliez par .
Étape 4.4.3.2
Élevez à la puissance .
Étape 4.4.3.3
Élevez à la puissance .
Étape 4.4.3.4
Utilisez la règle de puissance pour associer des exposants.
Étape 4.4.3.5
Additionnez et .
Étape 4.4.3.6
Réécrivez comme .
Appuyez ici pour voir plus d’étapes...
Étape 4.4.3.6.1
Utilisez pour réécrire comme .
Étape 4.4.3.6.2
Appliquez la règle de puissance et multipliez les exposants, .
Étape 4.4.3.6.3
Associez et .
Étape 4.4.3.6.4
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 4.4.3.6.4.1
Annulez le facteur commun.
Étape 4.4.3.6.4.2
Réécrivez l’expression.
Étape 4.4.3.6.5
Évaluez l’exposant.
Étape 4.4.4
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 4.4.4.1
Associez en utilisant la règle de produit pour les radicaux.
Étape 4.4.4.2
Multipliez par .
Étape 4.5
La solution complète est le résultat des parties positive et négative de la solution.
Appuyez ici pour voir plus d’étapes...
Étape 4.5.1
Commencez par utiliser la valeur positive du pour déterminer la première solution.
Étape 4.5.2
Ensuite, utilisez la valeur négative du pour déterminer la deuxième solution.
Étape 4.5.3
La solution complète est le résultat des parties positive et négative de la solution.
Étape 5
Le résultat peut être affiché en différentes formes.
Forme exacte :
Forme décimale :