Algèbre Exemples

Simplifier (((p^2-4)(p+3))/(p^3-27))÷(((p+2)(p^2+p-6))/(2p^2+6p+18))
Étape 1
Pour diviser par une fraction, multipliez par sa réciproque.
Étape 2
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Réécrivez comme .
Étape 2.2
Les deux termes étant des carrés parfaits, factorisez à l’aide de la formule de la différence des carrés, et .
Étape 3
Simplifiez le dénominateur.
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Réécrivez comme .
Étape 3.2
Les deux termes étant des cubes parfaits, factorisez à l’aide de la formule de la différence des cubes, et .
Étape 3.3
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 3.3.1
Déplacez à gauche de .
Étape 3.3.2
Élevez à la puissance .
Étape 4
Simplifiez les termes.
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 4.1.1
Factorisez à partir de .
Étape 4.1.2
Annulez le facteur commun.
Étape 4.1.3
Réécrivez l’expression.
Étape 4.2
Multipliez par .
Étape 5
Factorisez à partir de .
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Factorisez à partir de .
Étape 5.2
Factorisez à partir de .
Étape 5.3
Factorisez à partir de .
Étape 5.4
Factorisez à partir de .
Étape 5.5
Factorisez à partir de .
Étape 6
Factorisez à l’aide de la méthode AC.
Appuyez ici pour voir plus d’étapes...
Étape 6.1
Étudiez la forme . Déterminez une paire d’entiers dont le produit est et dont la somme est . Dans ce cas, dont le produit est et dont la somme est .
Étape 6.2
Écrivez la forme factorisée avec ces entiers.
Étape 7
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 7.1
Annulez le facteur commun.
Étape 7.2
Réécrivez l’expression.
Étape 8
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 8.1
Annulez le facteur commun.
Étape 8.2
Réécrivez l’expression.
Étape 9
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 9.1
Annulez le facteur commun.
Étape 9.2
Réécrivez l’expression.