Entrer un problème...
Algèbre Exemples
Étape 1
Soustrayez des deux côtés de l’équation.
Étape 2
Étape 2.1
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 2.2
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 2.3
Écrivez chaque expression avec un dénominateur commun , en multipliant chacun par un facteur approprié de .
Étape 2.3.1
Multipliez par .
Étape 2.3.2
Multipliez par .
Étape 2.3.3
Réorganisez les facteurs de .
Étape 2.4
Associez les numérateurs sur le dénominateur commun.
Étape 2.5
Simplifiez chaque terme.
Étape 2.5.1
Simplifiez le numérateur.
Étape 2.5.1.1
Factorisez à partir de .
Étape 2.5.1.1.1
Factorisez à partir de .
Étape 2.5.1.1.2
Factorisez à partir de .
Étape 2.5.1.2
Appliquez la propriété distributive.
Étape 2.5.1.3
Multipliez par .
Étape 2.5.1.4
Multipliez par .
Étape 2.5.1.5
Soustrayez de .
Étape 2.5.1.6
Soustrayez de .
Étape 2.5.1.7
Soustrayez de .
Étape 2.5.1.8
Multipliez par .
Étape 2.5.2
Placez le signe moins devant la fraction.
Étape 3
Définissez le dénominateur dans égal à pour déterminer où l’expression est indéfinie.
Étape 4
Étape 4.1
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 4.2
Définissez égal à et résolvez .
Étape 4.2.1
Définissez égal à .
Étape 4.2.2
Résolvez pour .
Étape 4.2.2.1
Soustrayez des deux côtés de l’équation.
Étape 4.2.2.2
Divisez chaque terme dans par et simplifiez.
Étape 4.2.2.2.1
Divisez chaque terme dans par .
Étape 4.2.2.2.2
Simplifiez le côté gauche.
Étape 4.2.2.2.2.1
Annulez le facteur commun de .
Étape 4.2.2.2.2.1.1
Annulez le facteur commun.
Étape 4.2.2.2.2.1.2
Divisez par .
Étape 4.2.2.2.3
Simplifiez le côté droit.
Étape 4.2.2.2.3.1
Placez le signe moins devant la fraction.
Étape 4.3
Définissez égal à et résolvez .
Étape 4.3.1
Définissez égal à .
Étape 4.3.2
Résolvez pour .
Étape 4.3.2.1
Ajoutez aux deux côtés de l’équation.
Étape 4.3.2.2
Divisez chaque terme dans par et simplifiez.
Étape 4.3.2.2.1
Divisez chaque terme dans par .
Étape 4.3.2.2.2
Simplifiez le côté gauche.
Étape 4.3.2.2.2.1
Annulez le facteur commun de .
Étape 4.3.2.2.2.1.1
Annulez le facteur commun.
Étape 4.3.2.2.2.1.2
Divisez par .
Étape 4.4
La solution finale est l’ensemble des valeurs qui rendent vraie.
Étape 5
L’équation est indéfinie là où le dénominateur est égal à , l’argument d’une racine carrée est inférieur à ou l’argument d’un logarithme est inférieur ou égal à .
Étape 6