Algèbre Exemples

Resolva para x (x+a^2)(x+b^2)=(x+ab)^2
Étape 1
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Réécrivez.
Étape 1.2
Simplifiez en ajoutant des zéros.
Étape 1.3
Développez à l’aide de la méthode FOIL.
Appuyez ici pour voir plus d’étapes...
Étape 1.3.1
Appliquez la propriété distributive.
Étape 1.3.2
Appliquez la propriété distributive.
Étape 1.3.3
Appliquez la propriété distributive.
Étape 1.4
Multipliez par .
Étape 2
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Réécrivez comme .
Étape 2.2
Développez à l’aide de la méthode FOIL.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1
Appliquez la propriété distributive.
Étape 2.2.2
Appliquez la propriété distributive.
Étape 2.2.3
Appliquez la propriété distributive.
Étape 2.3
Simplifiez et associez les termes similaires.
Appuyez ici pour voir plus d’étapes...
Étape 2.3.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 2.3.1.1
Multipliez par .
Étape 2.3.1.2
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 2.3.1.2.1
Déplacez .
Étape 2.3.1.2.2
Multipliez par .
Étape 2.3.1.3
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 2.3.1.3.1
Déplacez .
Étape 2.3.1.3.2
Multipliez par .
Étape 2.3.2
Additionnez et .
Appuyez ici pour voir plus d’étapes...
Étape 2.3.2.1
Déplacez .
Étape 2.3.2.2
Additionnez et .
Étape 3
Déplacez tous les termes contenant du côté gauche de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Soustrayez des deux côtés de l’équation.
Étape 3.2
Soustrayez des deux côtés de l’équation.
Étape 3.3
Associez les termes opposés dans .
Appuyez ici pour voir plus d’étapes...
Étape 3.3.1
Soustrayez de .
Étape 3.3.2
Additionnez et .
Étape 4
Déplacez tous les termes ne contenant pas du côté droit de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Soustrayez des deux côtés de l’équation.
Étape 4.2
Soustrayez de .
Étape 5
Factorisez Ă  partir de .
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Factorisez Ă  partir de .
Étape 5.2
Factorisez Ă  partir de .
Étape 5.3
Factorisez Ă  partir de .
Étape 5.4
Factorisez Ă  partir de .
Étape 5.5
Factorisez Ă  partir de .
Étape 6
Factorisez en utilisant la règle du carré parfait.
Appuyez ici pour voir plus d’étapes...
Étape 6.1
Réorganisez les termes.
Étape 6.2
Vérifiez que le terme central est le double du produit des nombres élevés au carré dans le premier terme et le troisième terme.
Étape 6.3
Réécrivez le polynôme.
Étape 6.4
Factorisez en utilisant la règle trinomiale du carré parfait , où et .
Étape 7
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 7.1
Divisez chaque terme dans par .
Étape 7.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 7.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 7.2.1.1
Annulez le facteur commun.
Étape 7.2.1.2
Divisez par .
Étape 7.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 7.3.1
Divisez par .