Algèbre Exemples

Trouver les valeurs exclues (x^2+3x-4)/(x^2+4x+4)*(2x^2+4x)/(x^2-4x+3)
Étape 1
Définissez le dénominateur dans égal à pour déterminer où l’expression est indéfinie.
Étape 2
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Factorisez en utilisant la règle du carré parfait.
Appuyez ici pour voir plus d’étapes...
Étape 2.1.1
Réécrivez comme .
Étape 2.1.2
Vérifiez que le terme central est le double du produit des nombres élevés au carré dans le premier terme et le troisième terme.
Étape 2.1.3
Réécrivez le polynôme.
Étape 2.1.4
Factorisez en utilisant la règle trinomiale du carré parfait , où et .
Étape 2.2
Définissez le égal à .
Étape 2.3
Soustrayez des deux côtés de l’équation.
Étape 3
Définissez le dénominateur dans égal à pour déterminer où l’expression est indéfinie.
Étape 4
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Factorisez à l’aide de la méthode AC.
Appuyez ici pour voir plus d’étapes...
Étape 4.1.1
Étudiez la forme . Déterminez une paire d’entiers dont le produit est et dont la somme est . Dans ce cas, dont le produit est et dont la somme est .
Étape 4.1.2
Écrivez la forme factorisée avec ces entiers.
Étape 4.2
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 4.3
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 4.3.1
Définissez égal à .
Étape 4.3.2
Ajoutez aux deux côtés de l’équation.
Étape 4.4
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 4.4.1
Définissez égal à .
Étape 4.4.2
Ajoutez aux deux côtés de l’équation.
Étape 4.5
La solution finale est l’ensemble des valeurs qui rendent vraie.
Étape 5
L’équation est indéfinie là où le dénominateur est égal à , l’argument d’une racine carrée est inférieur à ou l’argument d’un logarithme est inférieur ou égal à .
Étape 6