Entrer un problème...
Algèbre Exemples
Étape 1
Étape 1.1
Réécrivez comme .
Étape 1.2
Les deux termes étant des carrés parfaits, factorisez à l’aide de la formule de la différence des carrés, où et .
Étape 2
Étape 2.1
Déterminer le plus petit dénominateur commun d’une liste d’expressions équivaut à déterminer le plus petit multiple commun des dénominateurs de ces valeurs.
Étape 2.2
Le plus petit multiple commun est le plus petit nombre positif dans lequel tous les nombres peuvent être divisés parfaitement.
1. Indiquez les facteurs premiers de chaque nombre.
2. Multipliez chaque facteur le plus grand nombre de fois qu’il apparaît dans un nombre.
Étape 2.3
Le nombre n’est pas un nombre premier car il ne comporte qu’un facteur positif, qui est lui-même.
Pas premier
Étape 2.4
Le plus petit multiple commun de est le résultat de la multiplication de tous les facteurs premiers le plus grand nombre de fois qu’ils apparaissent dans un nombre ou l’autre.
Étape 2.5
Le facteur pour est lui-même.
se produit fois.
Étape 2.6
Le facteur pour est lui-même.
se produit fois.
Étape 2.7
Le facteur pour est lui-même.
se produit fois.
Étape 2.8
Le plus petit multiple commun de est le résultat de la multiplication de tous les facteurs le plus grand nombre de fois qu’ils apparaissent dans un terme ou l’autre.
Étape 3
Étape 3.1
Multipliez chaque terme dans par .
Étape 3.2
Simplifiez le côté gauche.
Étape 3.2.1
Simplifiez chaque terme.
Étape 3.2.1.1
Annulez le facteur commun de .
Étape 3.2.1.1.1
Factorisez à partir de .
Étape 3.2.1.1.2
Annulez le facteur commun.
Étape 3.2.1.1.3
Réécrivez l’expression.
Étape 3.2.1.2
Développez à l’aide de la méthode FOIL.
Étape 3.2.1.2.1
Appliquez la propriété distributive.
Étape 3.2.1.2.2
Appliquez la propriété distributive.
Étape 3.2.1.2.3
Appliquez la propriété distributive.
Étape 3.2.1.3
Associez les termes opposés dans .
Étape 3.2.1.3.1
Réorganisez les facteurs dans les termes et .
Étape 3.2.1.3.2
Additionnez et .
Étape 3.2.1.3.3
Additionnez et .
Étape 3.2.1.4
Simplifiez chaque terme.
Étape 3.2.1.4.1
Multipliez par .
Étape 3.2.1.4.2
Multipliez par .
Étape 3.2.1.5
Appliquez la propriété distributive.
Étape 3.2.1.6
Multipliez par .
Étape 3.2.1.7
Annulez le facteur commun de .
Étape 3.2.1.7.1
Factorisez à partir de .
Étape 3.2.1.7.2
Annulez le facteur commun.
Étape 3.2.1.7.3
Réécrivez l’expression.
Étape 3.2.1.8
Réécrivez comme .
Étape 3.2.1.9
Factorisez à partir de .
Étape 3.2.1.10
Factorisez à partir de .
Étape 3.2.1.11
Remettez les termes dans l’ordre.
Étape 3.2.1.12
Élevez à la puissance .
Étape 3.2.1.13
Élevez à la puissance .
Étape 3.2.1.14
Utilisez la règle de puissance pour associer des exposants.
Étape 3.2.1.15
Additionnez et .
Étape 3.2.1.16
Multipliez par .
Étape 3.3
Simplifiez le côté droit.
Étape 3.3.1
Simplifiez les termes.
Étape 3.3.1.1
Annulez le facteur commun de .
Étape 3.3.1.1.1
Factorisez à partir de .
Étape 3.3.1.1.2
Annulez le facteur commun.
Étape 3.3.1.1.3
Réécrivez l’expression.
Étape 3.3.1.2
Appliquez la propriété distributive.
Étape 3.3.1.3
Simplifiez l’expression.
Étape 3.3.1.3.1
Multipliez par .
Étape 3.3.1.3.2
Réécrivez en utilisant la commutativité de la multiplication.
Étape 3.3.2
Simplifiez chaque terme.
Étape 3.3.2.1
Multipliez par en additionnant les exposants.
Étape 3.3.2.1.1
Déplacez .
Étape 3.3.2.1.2
Multipliez par .
Étape 3.3.2.2
Multipliez par .
Étape 4
Étape 4.1
Déplacez tous les termes contenant du côté gauche de l’équation.
Étape 4.1.1
Soustrayez des deux côtés de l’équation.
Étape 4.1.2
Ajoutez aux deux côtés de l’équation.
Étape 4.1.3
Simplifiez chaque terme.
Étape 4.1.3.1
Réécrivez comme .
Étape 4.1.3.2
Développez à l’aide de la méthode FOIL.
Étape 4.1.3.2.1
Appliquez la propriété distributive.
Étape 4.1.3.2.2
Appliquez la propriété distributive.
Étape 4.1.3.2.3
Appliquez la propriété distributive.
Étape 4.1.3.3
Simplifiez et associez les termes similaires.
Étape 4.1.3.3.1
Simplifiez chaque terme.
Étape 4.1.3.3.1.1
Multipliez par .
Étape 4.1.3.3.1.2
Déplacez à gauche de .
Étape 4.1.3.3.1.3
Multipliez par .
Étape 4.1.3.3.2
Soustrayez de .
Étape 4.1.3.4
Appliquez la propriété distributive.
Étape 4.1.3.5
Simplifiez
Étape 4.1.3.5.1
Multipliez par .
Étape 4.1.3.5.2
Multipliez par .
Étape 4.1.4
Associez les termes opposés dans .
Étape 4.1.4.1
Soustrayez de .
Étape 4.1.4.2
Additionnez et .
Étape 4.1.5
Soustrayez de .
Étape 4.1.6
Additionnez et .
Étape 4.1.7
Soustrayez de .
Étape 4.2
Ajoutez aux deux côtés de l’équation.
Étape 4.3
Divisez chaque terme dans par et simplifiez.
Étape 4.3.1
Divisez chaque terme dans par .
Étape 4.3.2
Simplifiez le côté gauche.
Étape 4.3.2.1
Annulez le facteur commun de .
Étape 4.3.2.1.1
Annulez le facteur commun.
Étape 4.3.2.1.2
Divisez par .
Étape 4.3.3
Simplifiez le côté droit.
Étape 4.3.3.1
Divisez par .
Étape 4.4
Prenez la racine spécifiée des deux côtés de l’équation pour éliminer l’exposant du côté gauche.
Étape 4.5
Simplifiez .
Étape 4.5.1
Réécrivez comme .
Étape 4.5.2
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels positifs.
Étape 4.6
La solution complète est le résultat des parties positive et négative de la solution.
Étape 4.6.1
Commencez par utiliser la valeur positive du pour déterminer la première solution.
Étape 4.6.2
Ensuite, utilisez la valeur négative du pour déterminer la deuxième solution.
Étape 4.6.3
La solution complète est le résultat des parties positive et négative de la solution.
Étape 5
Excluez les solutions qui ne rendent pas vrai.