Entrer un problème...
Algèbre Exemples
Étape 1
Prenez la cotangente inverse des deux côtés de l’équation pour extraire de l’intérieur de la cotangente.
Étape 2
Étape 2.1
La valeur exacte de est .
Étape 3
Étape 3.1
Ajoutez aux deux côtés de l’équation.
Étape 3.2
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 3.3
Écrivez chaque expression avec un dénominateur commun , en multipliant chacun par un facteur approprié de .
Étape 3.3.1
Multipliez par .
Étape 3.3.2
Multipliez par .
Étape 3.4
Associez les numérateurs sur le dénominateur commun.
Étape 3.5
Simplifiez le numérateur.
Étape 3.5.1
Déplacez à gauche de .
Étape 3.5.2
Additionnez et .
Étape 4
La fonction cotangente est positive dans les premier et troisième quadrants. Pour déterminer la deuxième solution, ajoutez l’angle de référence de pour déterminer la solution dans le quatrième quadrant.
Étape 5
Étape 5.1
Simplifiez .
Étape 5.1.1
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 5.1.2
Associez les fractions.
Étape 5.1.2.1
Associez et .
Étape 5.1.2.2
Associez les numérateurs sur le dénominateur commun.
Étape 5.1.3
Simplifiez le numérateur.
Étape 5.1.3.1
Déplacez à gauche de .
Étape 5.1.3.2
Additionnez et .
Étape 5.2
Déplacez tous les termes ne contenant pas du côté droit de l’équation.
Étape 5.2.1
Ajoutez aux deux côtés de l’équation.
Étape 5.2.2
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 5.2.3
Écrivez chaque expression avec un dénominateur commun , en multipliant chacun par un facteur approprié de .
Étape 5.2.3.1
Multipliez par .
Étape 5.2.3.2
Multipliez par .
Étape 5.2.4
Associez les numérateurs sur le dénominateur commun.
Étape 5.2.5
Simplifiez le numérateur.
Étape 5.2.5.1
Déplacez à gauche de .
Étape 5.2.5.2
Additionnez et .
Étape 6
Étape 6.1
La période de la fonction peut être calculée en utilisant .
Étape 6.2
Remplacez par dans la formule pour la période.
Étape 6.3
La valeur absolue est la distance entre un nombre et zéro. La distance entre et est .
Étape 6.4
Divisez par .
Étape 7
La période de la fonction est si bien que les valeurs se répètent tous les radians dans les deux sens.
, pour tout entier
Étape 8
Consolidez les réponses.
, pour tout entier