Algèbre Exemples

Tracer 4<=-x^2-y
Étape 1
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Réécrivez de sorte que soit du côté gauche de l’inégalité.
Étape 1.2
Ajoutez aux deux côtés de l’inégalité.
Étape 1.3
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 1.3.1
Divisez chaque terme dans par . Lorsque vous multipliez ou divisez les deux côtés d’une inégalité par une valeur négative, inversez le sens du signe d’inégalité.
Étape 1.3.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 1.3.2.1
La division de deux valeurs négatives produit une valeur positive.
Étape 1.3.2.2
Divisez par .
Étape 1.3.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 1.3.3.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 1.3.3.1.1
Divisez par .
Étape 1.3.3.1.2
Déplacez le moins un du dénominateur de .
Étape 1.3.3.1.3
Réécrivez comme .
Étape 2
Déterminez la pente et l’ordonnée à l’origine de la ligne séparatrice.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Réécrivez en forme affine.
Appuyez ici pour voir plus d’étapes...
Étape 2.1.1
La forme affine est , où est la pente et est l’ordonnée à l’origine.
Étape 2.1.2
Remettez dans l’ordre et .
Étape 2.2
L’équation n’est pas linéaire, si bien qu’il n’existe pas de la pente constante.
Pas linéaire
Pas linéaire
Étape 3
Représentez une droite continue, puis ombrez la surface sous la ligne séparatrice étant donné que est inférieur à .
Étape 4