Entrer un problème...
Algèbre Exemples
Étape 1
Étape 1.1
Déterminer le plus petit dénominateur commun d’une liste d’expressions équivaut à déterminer le plus petit multiple commun des dénominateurs de ces valeurs.
Étape 1.2
Comme contient des nombres et des variables, deux étapes sont nécessaires pour déterminer le plus petit multiple commun. Déterminez le plus petit multiple commun pour la partie numérique puis déterminez le plus petit multiple commun pour la partie variable .
Étape 1.3
Le plus petit multiple commun est le plus petit nombre positif dans lequel tous les nombres peuvent être divisés parfaitement.
1. Indiquez les facteurs premiers de chaque nombre.
2. Multipliez chaque facteur le plus grand nombre de fois qu’il apparaît dans un nombre.
Étape 1.4
Le nombre n’est pas un nombre premier car il ne comporte qu’un facteur positif, qui est lui-même.
Pas premier
Étape 1.5
Le plus petit multiple commun de est le résultat de la multiplication de tous les facteurs premiers le plus grand nombre de fois qu’ils apparaissent dans un nombre ou l’autre.
Étape 1.6
Le facteur pour est lui-même.
se produit fois.
Étape 1.7
Le plus petit multiple commun de est le résultat de la multiplication de tous les facteurs premiers le plus grand nombre de fois qu’ils apparaissent dans un terme ou l’autre.
Étape 2
Étape 2.1
Multipliez chaque terme dans par .
Étape 2.2
Simplifiez le côté gauche.
Étape 2.2.1
Annulez le facteur commun de .
Étape 2.2.1.1
Annulez le facteur commun.
Étape 2.2.1.2
Réécrivez l’expression.
Étape 2.3
Simplifiez le côté droit.
Étape 2.3.1
Simplifiez chaque terme.
Étape 2.3.1.1
Annulez le facteur commun de .
Étape 2.3.1.1.1
Annulez le facteur commun.
Étape 2.3.1.1.2
Réécrivez l’expression.
Étape 2.3.1.2
Multipliez par en additionnant les exposants.
Étape 2.3.1.2.1
Déplacez .
Étape 2.3.1.2.2
Multipliez par .
Étape 2.3.1.2.2.1
Élevez à la puissance .
Étape 2.3.1.2.2.2
Utilisez la règle de puissance pour associer des exposants.
Étape 2.3.1.2.3
Additionnez et .
Étape 3
Étape 3.1
Ajoutez aux deux côtés de l’équation.
Étape 3.2
Soustrayez des deux côtés de l’équation.
Étape 3.3
Associez les termes opposés dans .
Étape 3.3.1
Soustrayez de .
Étape 3.3.2
Additionnez et .
Étape 3.4
Factorisez à partir de .
Étape 3.4.1
Remettez dans l’ordre et .
Étape 3.4.2
Factorisez à partir de .
Étape 3.4.3
Factorisez à partir de .
Étape 3.4.4
Factorisez à partir de .
Étape 3.5
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 3.6
Définissez égal à et résolvez .
Étape 3.6.1
Définissez égal à .
Étape 3.6.2
Résolvez pour .
Étape 3.6.2.1
Prenez la racine spécifiée des deux côtés de l’équation pour éliminer l’exposant du côté gauche.
Étape 3.6.2.2
Simplifiez .
Étape 3.6.2.2.1
Réécrivez comme .
Étape 3.6.2.2.2
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels positifs.
Étape 3.6.2.2.3
Plus ou moins est .
Étape 3.7
Définissez égal à et résolvez .
Étape 3.7.1
Définissez égal à .
Étape 3.7.2
Résolvez pour .
Étape 3.7.2.1
Soustrayez des deux côtés de l’équation.
Étape 3.7.2.2
Divisez chaque terme dans par et simplifiez.
Étape 3.7.2.2.1
Divisez chaque terme dans par .
Étape 3.7.2.2.2
Simplifiez le côté gauche.
Étape 3.7.2.2.2.1
Annulez le facteur commun de .
Étape 3.7.2.2.2.1.1
Annulez le facteur commun.
Étape 3.7.2.2.2.1.2
Divisez par .
Étape 3.7.2.2.3
Simplifiez le côté droit.
Étape 3.7.2.2.3.1
La division de deux valeurs négatives produit une valeur positive.
Étape 3.8
La solution finale est l’ensemble des valeurs qui rendent vraie.
Étape 4
Excluez les solutions qui ne rendent pas vrai.
Étape 5
Le résultat peut être affiché en différentes formes.
Forme exacte :
Forme décimale :