Algèbre Exemples

Resolva a Inequação para x base logarithmique x-3 de 36>2
Étape 1
Convertissez l’inégalité en une égalité.
Étape 2
Résolvez l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Réécrivez en forme exponentielle en utilisant la définition d’un logarithme. Si et sont des nombres réels positifs et , alors est équivalent à .
Étape 2.2
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1
Prenez la racine spécifiée des deux côtés de l’équation pour éliminer l’exposant du côté gauche.
Étape 2.2.2
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.2.1
Réécrivez comme .
Étape 2.2.2.2
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels positifs.
Étape 2.2.3
La solution complète est le résultat des parties positive et négative de la solution.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.3.1
Commencez par utiliser la valeur positive du pour déterminer la première solution.
Étape 2.2.3.2
Déplacez tous les termes ne contenant pas du côté droit de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.3.2.1
Ajoutez aux deux côtés de l’équation.
Étape 2.2.3.2.2
Additionnez et .
Étape 2.2.3.3
Ensuite, utilisez la valeur négative du pour déterminer la deuxième solution.
Étape 2.2.3.4
Déplacez tous les termes ne contenant pas du côté droit de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.3.4.1
Ajoutez aux deux côtés de l’équation.
Étape 2.2.3.4.2
Additionnez et .
Étape 2.2.3.5
La solution complète est le résultat des parties positive et négative de la solution.
Étape 3
Déterminez le domaine de .
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Définissez la base dans supérieure à pour déterminer où l’expression est définie.
Étape 3.2
Ajoutez aux deux côtés de l’inégalité.
Étape 3.3
Définissez la base dans égale à pour déterminer où l’expression est indéfinie.
Étape 3.4
Déplacez tous les termes ne contenant pas du côté droit de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 3.4.1
Ajoutez aux deux côtés de l’équation.
Étape 3.4.2
Additionnez et .
Étape 3.5
Le domaine est l’ensemble des valeurs de qui rendent l’expression définie.
Étape 4
Utilisez chaque racine pour créer des intervalles de test.
Étape 5
Choisissez une valeur de test depuis chaque intervalle et placez cette valeur dans l’inégalité d’origine afin de déterminer quels intervalles satisfont à l’inégalité.
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Testez une valeur sur l’intervalle pour voir si elle rend vraie l’inégalité.
Appuyez ici pour voir plus d’étapes...
Étape 5.1.1
Choisissez une valeur sur l’intervalle et constatez si cette valeur rend vraie l’inégalité d’origine.
Étape 5.1.2
Remplacez par dans l’inégalité d’origine.
Étape 5.1.3
Le logarithme d’un nombre négatif est indéfini.
Indéfini
Indéfini
Étape 5.2
Testez une valeur sur l’intervalle pour voir si elle rend vraie l’inégalité.
Appuyez ici pour voir plus d’étapes...
Étape 5.2.1
Choisissez une valeur sur l’intervalle et constatez si cette valeur rend vraie l’inégalité d’origine.
Étape 5.2.2
Remplacez par dans l’inégalité d’origine.
Étape 5.2.3
Le logarithme d’un nombre négatif est indéfini.
Indéfini
Indéfini
Étape 5.3
Testez une valeur sur l’intervalle pour voir si elle rend vraie l’inégalité.
Appuyez ici pour voir plus d’étapes...
Étape 5.3.1
Choisissez une valeur sur l’intervalle et constatez si cette valeur rend vraie l’inégalité d’origine.
Étape 5.3.2
Remplacez par dans l’inégalité d’origine.
Étape 5.3.3
Le côté gauche n’est pas supérieur au côté droit , ce qui signifie que l’énoncé donné est faux.
Faux
Faux
Étape 5.4
Testez une valeur sur l’intervalle pour voir si elle rend vraie l’inégalité.
Appuyez ici pour voir plus d’étapes...
Étape 5.4.1
Choisissez une valeur sur l’intervalle et constatez si cette valeur rend vraie l’inégalité d’origine.
Étape 5.4.2
Remplacez par dans l’inégalité d’origine.
Étape 5.4.3
Le côté gauche est supérieur au côté droit , ce qui signifie que l’énoncé donné est toujours vrai.
Vrai
Vrai
Étape 5.5
Testez une valeur sur l’intervalle pour voir si elle rend vraie l’inégalité.
Appuyez ici pour voir plus d’étapes...
Étape 5.5.1
Choisissez une valeur sur l’intervalle et constatez si cette valeur rend vraie l’inégalité d’origine.
Étape 5.5.2
Remplacez par dans l’inégalité d’origine.
Étape 5.5.3
Le côté gauche n’est pas supérieur au côté droit , ce qui signifie que l’énoncé donné est faux.
Faux
Faux
Étape 5.6
Comparez les intervalles afin de déterminer lesquels satisfont à l’inégalité d’origine.
Undefined
Undefined
Faux
Vrai
Faux
Indéfini
Étape 6
La solution se compose de tous les intervalles vrais.
Étape 7
Le résultat peut être affiché en différentes formes.
Forme d’inégalité :
Notation d’intervalle :
Étape 8