Entrer un problème...
Algèbre Exemples
Étape 1
Soustrayez des deux côtés de l’inégalité.
Étape 2
Convertissez l’inégalité en une équation.
Étape 3
Utilisez la formule quadratique pour déterminer les solutions.
Étape 4
Remplacez les valeurs , et dans la formule quadratique et résolvez pour .
Étape 5
Étape 5.1
Simplifiez le numérateur.
Étape 5.1.1
Élevez à la puissance .
Étape 5.1.2
Multipliez .
Étape 5.1.2.1
Multipliez par .
Étape 5.1.2.2
Multipliez par .
Étape 5.1.3
Additionnez et .
Étape 5.1.4
Réécrivez comme .
Étape 5.1.4.1
Factorisez à partir de .
Étape 5.1.4.2
Réécrivez comme .
Étape 5.1.5
Extrayez les termes de sous le radical.
Étape 5.2
Multipliez par .
Étape 5.3
Simplifiez .
Étape 6
Consolidez les solutions.
Étape 7
Utilisez chaque racine pour créer des intervalles de test.
Étape 8
Étape 8.1
Testez une valeur sur l’intervalle pour voir si elle rend vraie l’inégalité.
Étape 8.1.1
Choisissez une valeur sur l’intervalle et constatez si cette valeur rend vraie l’inégalité d’origine.
Étape 8.1.2
Remplacez par dans l’inégalité d’origine.
Étape 8.1.3
Le côté gauche est supérieur au côté droit , ce qui signifie que l’énoncé donné est faux.
Faux
Faux
Étape 8.2
Testez une valeur sur l’intervalle pour voir si elle rend vraie l’inégalité.
Étape 8.2.1
Choisissez une valeur sur l’intervalle et constatez si cette valeur rend vraie l’inégalité d’origine.
Étape 8.2.2
Remplacez par dans l’inégalité d’origine.
Étape 8.2.3
Le côté gauche est inférieur au côté droit , ce qui signifie que l’énoncé donné est toujours vrai.
Vrai
Vrai
Étape 8.3
Testez une valeur sur l’intervalle pour voir si elle rend vraie l’inégalité.
Étape 8.3.1
Choisissez une valeur sur l’intervalle et constatez si cette valeur rend vraie l’inégalité d’origine.
Étape 8.3.2
Remplacez par dans l’inégalité d’origine.
Étape 8.3.3
Le côté gauche est supérieur au côté droit , ce qui signifie que l’énoncé donné est faux.
Faux
Faux
Étape 8.4
Comparez les intervalles afin de déterminer lesquels satisfont à l’inégalité d’origine.
Faux
Vrai
Faux
Faux
Vrai
Faux
Étape 9
La solution se compose de tous les intervalles vrais.
Étape 10
Le résultat peut être affiché en différentes formes.
Forme d’inégalité :
Notation d’intervalle :
Étape 11