Entrer un problème...
Algèbre Exemples
Étape 1
Étape 1.1
Déterminer le plus petit dénominateur commun d’une liste d’expressions équivaut à déterminer le plus petit multiple commun des dénominateurs de ces valeurs.
Étape 1.2
Supprimez les parenthèses.
Étape 1.3
Le plus petit multiple commun de toute expression est l’expression.
Étape 2
Étape 2.1
Multipliez chaque terme dans par .
Étape 2.2
Simplifiez le côté gauche.
Étape 2.2.1
Annulez le facteur commun de .
Étape 2.2.1.1
Annulez le facteur commun.
Étape 2.2.1.2
Réécrivez l’expression.
Étape 2.3
Simplifiez le côté droit.
Étape 2.3.1
Simplifiez chaque terme.
Étape 2.3.1.1
Appliquez la propriété distributive.
Étape 2.3.1.2
Multipliez par .
Étape 2.3.1.3
Multipliez par .
Étape 2.3.1.4
Appliquez la propriété distributive.
Étape 2.3.1.5
Multipliez par .
Étape 2.3.2
Associez les termes opposés dans .
Étape 2.3.2.1
Soustrayez de .
Étape 2.3.2.2
Additionnez et .
Étape 3
Étape 3.1
Soustrayez des deux côtés de l’équation.
Étape 3.2
Ajoutez aux deux côtés de l’équation.
Étape 3.3
Utilisez la formule quadratique pour déterminer les solutions.
Étape 3.4
Remplacez les valeurs , et dans la formule quadratique et résolvez pour .
Étape 3.5
Simplifiez
Étape 3.5.1
Simplifiez le numérateur.
Étape 3.5.1.1
Un à n’importe quelle puissance est égal à un.
Étape 3.5.1.2
Multipliez .
Étape 3.5.1.2.1
Multipliez par .
Étape 3.5.1.2.2
Multipliez par .
Étape 3.5.1.3
Additionnez et .
Étape 3.5.2
Multipliez par .
Étape 3.5.3
Simplifiez .
Étape 3.6
La réponse finale est la combinaison des deux solutions.
Étape 4
Le résultat peut être affiché en différentes formes.
Forme exacte :
Forme décimale :