Trigonometría Ejemplos

Encuentre dónde la función está indefinida o es discontinua ((10r^2-94r+36)/(5r^2+23r-10))/((45r^2-23r+4)/(9r^2+43r-10))
Paso 1
Establece el denominador en igual que para obtener el lugar donde no está definida la expresión.
Paso 2
Resuelve
Toca para ver más pasos...
Paso 2.1
Factoriza por agrupación.
Toca para ver más pasos...
Paso 2.1.1
Para un polinomio de la forma , reescribe el término medio como una suma de dos términos cuyo producto es y cuya suma es .
Toca para ver más pasos...
Paso 2.1.1.1
Factoriza de .
Paso 2.1.1.2
Reescribe como más
Paso 2.1.1.3
Aplica la propiedad distributiva.
Paso 2.1.2
Factoriza el máximo común divisor de cada grupo.
Toca para ver más pasos...
Paso 2.1.2.1
Agrupa los dos primeros términos y los dos últimos términos.
Paso 2.1.2.2
Factoriza el máximo común divisor (MCD) de cada grupo.
Paso 2.1.3
Factoriza el polinomio mediante la factorización del máximo común divisor, .
Paso 2.2
Si cualquier factor individual en el lado izquierdo de la ecuación es igual a , la expresión completa será igual a .
Paso 2.3
Establece igual a y resuelve .
Toca para ver más pasos...
Paso 2.3.1
Establece igual a .
Paso 2.3.2
Resuelve en .
Toca para ver más pasos...
Paso 2.3.2.1
Suma a ambos lados de la ecuación.
Paso 2.3.2.2
Divide cada término en por y simplifica.
Toca para ver más pasos...
Paso 2.3.2.2.1
Divide cada término en por .
Paso 2.3.2.2.2
Simplifica el lado izquierdo.
Toca para ver más pasos...
Paso 2.3.2.2.2.1
Cancela el factor común de .
Toca para ver más pasos...
Paso 2.3.2.2.2.1.1
Cancela el factor común.
Paso 2.3.2.2.2.1.2
Divide por .
Paso 2.4
Establece igual a y resuelve .
Toca para ver más pasos...
Paso 2.4.1
Establece igual a .
Paso 2.4.2
Resta de ambos lados de la ecuación.
Paso 2.5
La solución final comprende todos los valores que hacen verdadera.
Paso 3
Establece el denominador en igual que para obtener el lugar donde no está definida la expresión.
Paso 4
Resuelve
Toca para ver más pasos...
Paso 4.1
Factoriza por agrupación.
Toca para ver más pasos...
Paso 4.1.1
Para un polinomio de la forma , reescribe el término medio como una suma de dos términos cuyo producto es y cuya suma es .
Toca para ver más pasos...
Paso 4.1.1.1
Factoriza de .
Paso 4.1.1.2
Reescribe como más
Paso 4.1.1.3
Aplica la propiedad distributiva.
Paso 4.1.2
Factoriza el máximo común divisor de cada grupo.
Toca para ver más pasos...
Paso 4.1.2.1
Agrupa los dos primeros términos y los dos últimos términos.
Paso 4.1.2.2
Factoriza el máximo común divisor (MCD) de cada grupo.
Paso 4.1.3
Factoriza el polinomio mediante la factorización del máximo común divisor, .
Paso 4.2
Si cualquier factor individual en el lado izquierdo de la ecuación es igual a , la expresión completa será igual a .
Paso 4.3
Establece igual a y resuelve .
Toca para ver más pasos...
Paso 4.3.1
Establece igual a .
Paso 4.3.2
Resuelve en .
Toca para ver más pasos...
Paso 4.3.2.1
Suma a ambos lados de la ecuación.
Paso 4.3.2.2
Divide cada término en por y simplifica.
Toca para ver más pasos...
Paso 4.3.2.2.1
Divide cada término en por .
Paso 4.3.2.2.2
Simplifica el lado izquierdo.
Toca para ver más pasos...
Paso 4.3.2.2.2.1
Cancela el factor común de .
Toca para ver más pasos...
Paso 4.3.2.2.2.1.1
Cancela el factor común.
Paso 4.3.2.2.2.1.2
Divide por .
Paso 4.4
Establece igual a y resuelve .
Toca para ver más pasos...
Paso 4.4.1
Establece igual a .
Paso 4.4.2
Resta de ambos lados de la ecuación.
Paso 4.5
La solución final comprende todos los valores que hacen verdadera.
Paso 5
Establece el denominador en igual que para obtener el lugar donde no está definida la expresión.
Paso 6
Resuelve
Toca para ver más pasos...
Paso 6.1
Establece el numerador igual a cero.
Paso 6.2
Resuelve la ecuación en .
Toca para ver más pasos...
Paso 6.2.1
Usa la fórmula cuadrática para obtener las soluciones.
Paso 6.2.2
Sustituye los valores , y en la fórmula cuadrática y resuelve .
Paso 6.2.3
Simplifica.
Toca para ver más pasos...
Paso 6.2.3.1
Simplifica el numerador.
Toca para ver más pasos...
Paso 6.2.3.1.1
Eleva a la potencia de .
Paso 6.2.3.1.2
Multiplica .
Toca para ver más pasos...
Paso 6.2.3.1.2.1
Multiplica por .
Paso 6.2.3.1.2.2
Multiplica por .
Paso 6.2.3.1.3
Resta de .
Paso 6.2.3.1.4
Reescribe como .
Paso 6.2.3.1.5
Reescribe como .
Paso 6.2.3.1.6
Reescribe como .
Paso 6.2.3.2
Multiplica por .
Paso 6.2.4
Simplifica la expresión para obtener el valor de la parte de .
Toca para ver más pasos...
Paso 6.2.4.1
Simplifica el numerador.
Toca para ver más pasos...
Paso 6.2.4.1.1
Eleva a la potencia de .
Paso 6.2.4.1.2
Multiplica .
Toca para ver más pasos...
Paso 6.2.4.1.2.1
Multiplica por .
Paso 6.2.4.1.2.2
Multiplica por .
Paso 6.2.4.1.3
Resta de .
Paso 6.2.4.1.4
Reescribe como .
Paso 6.2.4.1.5
Reescribe como .
Paso 6.2.4.1.6
Reescribe como .
Paso 6.2.4.2
Multiplica por .
Paso 6.2.4.3
Cambia a .
Paso 6.2.5
Simplifica la expresión para obtener el valor de la parte de .
Toca para ver más pasos...
Paso 6.2.5.1
Simplifica el numerador.
Toca para ver más pasos...
Paso 6.2.5.1.1
Eleva a la potencia de .
Paso 6.2.5.1.2
Multiplica .
Toca para ver más pasos...
Paso 6.2.5.1.2.1
Multiplica por .
Paso 6.2.5.1.2.2
Multiplica por .
Paso 6.2.5.1.3
Resta de .
Paso 6.2.5.1.4
Reescribe como .
Paso 6.2.5.1.5
Reescribe como .
Paso 6.2.5.1.6
Reescribe como .
Paso 6.2.5.2
Multiplica por .
Paso 6.2.5.3
Cambia a .
Paso 6.2.6
La respuesta final es la combinación de ambas soluciones.
Paso 7
La ecuación es indefinida cuando el denominador es igual a , el argumento de una raíz cuadrada es menor que o el argumento de un logaritmo es menor o igual que .
Paso 8