Trigonometría Ejemplos

Encuentre dónde la función está indefinida o es discontinua (3+4i)^2-2(x-yi)=x+yi
Paso 1
Resuelve
Toca para ver más pasos...
Paso 1.1
Simplifica cada término.
Toca para ver más pasos...
Paso 1.1.1
Aplica la propiedad distributiva.
Paso 1.1.2
Multiplica por .
Paso 1.2
Mueve todos los términos que contengan al lado izquierdo de la ecuación.
Toca para ver más pasos...
Paso 1.2.1
Resta de ambos lados de la ecuación.
Paso 1.2.2
Simplifica cada término.
Toca para ver más pasos...
Paso 1.2.2.1
Reescribe como .
Paso 1.2.2.2
Expande con el método PEIU (primero, exterior, interior, ultimo).
Toca para ver más pasos...
Paso 1.2.2.2.1
Aplica la propiedad distributiva.
Paso 1.2.2.2.2
Aplica la propiedad distributiva.
Paso 1.2.2.2.3
Aplica la propiedad distributiva.
Paso 1.2.2.3
Simplifica y combina los términos similares.
Toca para ver más pasos...
Paso 1.2.2.3.1
Simplifica cada término.
Toca para ver más pasos...
Paso 1.2.2.3.1.1
Multiplica por .
Paso 1.2.2.3.1.2
Multiplica por .
Paso 1.2.2.3.1.3
Multiplica por .
Paso 1.2.2.3.1.4
Multiplica .
Toca para ver más pasos...
Paso 1.2.2.3.1.4.1
Multiplica por .
Paso 1.2.2.3.1.4.2
Eleva a la potencia de .
Paso 1.2.2.3.1.4.3
Eleva a la potencia de .
Paso 1.2.2.3.1.4.4
Usa la regla de la potencia para combinar exponentes.
Paso 1.2.2.3.1.4.5
Suma y .
Paso 1.2.2.3.1.5
Reescribe como .
Paso 1.2.2.3.1.6
Multiplica por .
Paso 1.2.2.3.2
Resta de .
Paso 1.2.2.3.3
Suma y .
Paso 1.2.3
Resta de .
Paso 1.2.4
Multiplica por .
Paso 1.3
Mueve todos los términos que no contengan al lado derecho de la ecuación.
Toca para ver más pasos...
Paso 1.3.1
Suma a ambos lados de la ecuación.
Paso 1.3.2
Resta de ambos lados de la ecuación.
Paso 1.3.3
Suma a ambos lados de la ecuación.
Paso 1.3.4
Suma y .
Paso 1.4
Divide cada término en por y simplifica.
Toca para ver más pasos...
Paso 1.4.1
Divide cada término en por .
Paso 1.4.2
Simplifica el lado izquierdo.
Toca para ver más pasos...
Paso 1.4.2.1
Cancela el factor común de .
Toca para ver más pasos...
Paso 1.4.2.1.1
Cancela el factor común.
Paso 1.4.2.1.2
Divide por .
Paso 1.4.3
Simplifica el lado derecho.
Toca para ver más pasos...
Paso 1.4.3.1
Simplifica cada término.
Toca para ver más pasos...
Paso 1.4.3.1.1
Multiplica el numerador y el denominador de por el conjugado de para hacer real el denominador.
Paso 1.4.3.1.2
Multiplica.
Toca para ver más pasos...
Paso 1.4.3.1.2.1
Combinar.
Paso 1.4.3.1.2.2
Simplifica el denominador.
Toca para ver más pasos...
Paso 1.4.3.1.2.2.1
Eleva a la potencia de .
Paso 1.4.3.1.2.2.2
Eleva a la potencia de .
Paso 1.4.3.1.2.2.3
Usa la regla de la potencia para combinar exponentes.
Paso 1.4.3.1.2.2.4
Suma y .
Paso 1.4.3.1.2.2.5
Reescribe como .
Paso 1.4.3.1.3
Mueve el negativo del denominador de .
Paso 1.4.3.1.4
Reescribe como .
Paso 1.4.3.1.5
Multiplica por .
Paso 1.4.3.1.6
Multiplica el numerador y el denominador de por el conjugado de para hacer real el denominador.
Paso 1.4.3.1.7
Multiplica.
Toca para ver más pasos...
Paso 1.4.3.1.7.1
Combinar.
Paso 1.4.3.1.7.2
Simplifica el denominador.
Toca para ver más pasos...
Paso 1.4.3.1.7.2.1
Eleva a la potencia de .
Paso 1.4.3.1.7.2.2
Eleva a la potencia de .
Paso 1.4.3.1.7.2.3
Usa la regla de la potencia para combinar exponentes.
Paso 1.4.3.1.7.2.4
Suma y .
Paso 1.4.3.1.7.2.5
Reescribe como .
Paso 1.4.3.1.8
Mueve el negativo del denominador de .
Paso 1.4.3.1.9
Reescribe como .
Paso 1.4.3.1.10
Multiplica por .
Paso 1.4.3.1.11
Cancela el factor común de .
Toca para ver más pasos...
Paso 1.4.3.1.11.1
Cancela el factor común.
Paso 1.4.3.1.11.2
Divide por .
Paso 2
El dominio de la expresión son todos números reales, excepto cuando la expresión no está definida. En ese caso, no hay ningún número real que haga que la expresión sea indefinida.