Ingresa un problema...
Cálculo Ejemplos
Paso 1
Paso 1.1
Obtén la primera derivada.
Paso 1.1.1
Diferencia con la regla del producto, que establece que es donde y .
Paso 1.1.2
Diferencia con la regla de la cadena, que establece que es donde y .
Paso 1.1.2.1
Para aplicar la regla de la cadena, establece como .
Paso 1.1.2.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.1.2.3
Reemplaza todos los casos de con .
Paso 1.1.3
Diferencia.
Paso 1.1.3.1
Según la regla de la suma, la derivada de con respecto a es .
Paso 1.1.3.2
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.1.3.3
Suma y .
Paso 1.1.3.4
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.1.3.5
Multiplica por .
Paso 1.1.3.6
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.1.3.7
Multiplica por .
Paso 1.1.3.8
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.1.3.9
Multiplica por .
Paso 1.1.4
Simplifica.
Paso 1.1.4.1
Factoriza de .
Paso 1.1.4.1.1
Factoriza de .
Paso 1.1.4.1.2
Factoriza de .
Paso 1.1.4.1.3
Factoriza de .
Paso 1.1.4.2
Combina los términos.
Paso 1.1.4.2.1
Mueve a la izquierda de .
Paso 1.1.4.2.2
Resta de .
Paso 1.2
La primera derivada de con respecto a es .
Paso 2
Paso 2.1
Establece la primera derivada igual a .
Paso 2.2
Si cualquier factor individual en el lado izquierdo de la ecuación es igual a , la expresión completa será igual a .
Paso 2.3
Establece igual a y resuelve .
Paso 2.3.1
Establece igual a .
Paso 2.3.2
Resuelve en .
Paso 2.3.2.1
Establece igual a .
Paso 2.3.2.2
Resuelve
Paso 2.3.2.2.1
Resta de ambos lados de la ecuación.
Paso 2.3.2.2.2
Divide cada término en por y simplifica.
Paso 2.3.2.2.2.1
Divide cada término en por .
Paso 2.3.2.2.2.2
Simplifica el lado izquierdo.
Paso 2.3.2.2.2.2.1
La división de dos valores negativos da como resultado un valor positivo.
Paso 2.3.2.2.2.2.2
Divide por .
Paso 2.3.2.2.2.3
Simplifica el lado derecho.
Paso 2.3.2.2.2.3.1
Divide por .
Paso 2.4
Establece igual a y resuelve .
Paso 2.4.1
Establece igual a .
Paso 2.4.2
Resuelve en .
Paso 2.4.2.1
Resta de ambos lados de la ecuación.
Paso 2.4.2.2
Divide cada término en por y simplifica.
Paso 2.4.2.2.1
Divide cada término en por .
Paso 2.4.2.2.2
Simplifica el lado izquierdo.
Paso 2.4.2.2.2.1
Cancela el factor común de .
Paso 2.4.2.2.2.1.1
Cancela el factor común.
Paso 2.4.2.2.2.1.2
Divide por .
Paso 2.4.2.2.3
Simplifica el lado derecho.
Paso 2.4.2.2.3.1
Divide por .
Paso 2.5
La solución final comprende todos los valores que hacen verdadera.
Paso 3
Paso 3.1
El dominio de la expresión son todos números reales, excepto cuando la expresión no está definida. En ese caso, no hay ningún número real que haga que la expresión sea indefinida.
Paso 4
Paso 4.1
Evalúa en .
Paso 4.1.1
Sustituye por .
Paso 4.1.2
Simplifica.
Paso 4.1.2.1
Multiplica por .
Paso 4.1.2.2
Resta de .
Paso 4.1.2.3
Elevar a cualquier potencia positiva da como resultado .
Paso 4.1.2.4
Multiplica por .
Paso 4.2
Evalúa en .
Paso 4.2.1
Sustituye por .
Paso 4.2.2
Simplifica.
Paso 4.2.2.1
Multiplica por .
Paso 4.2.2.2
Resta de .
Paso 4.2.2.3
Eleva a la potencia de .
Paso 4.2.2.4
Multiplica por .
Paso 4.3
Enumera todos los puntos.
Paso 5