Ingresa un problema...
Cálculo Ejemplos
Paso 1
Escribe como una función.
Paso 2
Paso 2.1
Obtén la primera derivada.
Paso 2.1.1
Según la regla de la suma, la derivada de con respecto a es .
Paso 2.1.2
Evalúa .
Paso 2.1.2.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.1.2.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 2.1.2.3
Multiplica por .
Paso 2.1.3
Evalúa .
Paso 2.1.3.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.1.3.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 2.1.3.3
Multiplica por .
Paso 2.2
La primera derivada de con respecto a es .
Paso 3
Paso 3.1
Establece la primera derivada igual a .
Paso 3.2
Suma a ambos lados de la ecuación.
Paso 3.3
Divide cada término en por y simplifica.
Paso 3.3.1
Divide cada término en por .
Paso 3.3.2
Simplifica el lado izquierdo.
Paso 3.3.2.1
Cancela el factor común de .
Paso 3.3.2.1.1
Cancela el factor común.
Paso 3.3.2.1.2
Divide por .
Paso 3.3.3
Simplifica el lado derecho.
Paso 3.3.3.1
Cancela el factor común de y .
Paso 3.3.3.1.1
Factoriza de .
Paso 3.3.3.1.2
Cancela los factores comunes.
Paso 3.3.3.1.2.1
Factoriza de .
Paso 3.3.3.1.2.2
Cancela el factor común.
Paso 3.3.3.1.2.3
Reescribe la expresión.
Paso 3.4
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Paso 3.5
Simplifica .
Paso 3.5.1
Reescribe como .
Paso 3.5.2
Cualquier raíz de es .
Paso 3.5.3
Multiplica por .
Paso 3.5.4
Combina y simplifica el denominador.
Paso 3.5.4.1
Multiplica por .
Paso 3.5.4.2
Eleva a la potencia de .
Paso 3.5.4.3
Eleva a la potencia de .
Paso 3.5.4.4
Usa la regla de la potencia para combinar exponentes.
Paso 3.5.4.5
Suma y .
Paso 3.5.4.6
Reescribe como .
Paso 3.5.4.6.1
Usa para reescribir como .
Paso 3.5.4.6.2
Aplica la regla de la potencia y multiplica los exponentes, .
Paso 3.5.4.6.3
Combina y .
Paso 3.5.4.6.4
Cancela el factor común de .
Paso 3.5.4.6.4.1
Cancela el factor común.
Paso 3.5.4.6.4.2
Reescribe la expresión.
Paso 3.5.4.6.5
Evalúa el exponente.
Paso 3.6
La solución completa es el resultado de las partes positiva y negativa de la solución.
Paso 3.6.1
Primero, usa el valor positivo de para obtener la primera solución.
Paso 3.6.2
Luego, usa el valor negativo de para obtener la segunda solución.
Paso 3.6.3
La solución completa es el resultado de las partes positiva y negativa de la solución.
Paso 4
Los valores que hacen que la derivada sea igual a son .
Paso 5
Divide en intervalos separados alrededor de los valores de que hacen que la derivada sea o indefinida.
Paso 6
Paso 6.1
Reemplaza la variable con en la expresión.
Paso 6.2
Simplifica el resultado.
Paso 6.2.1
Simplifica cada término.
Paso 6.2.1.1
Eleva a la potencia de .
Paso 6.2.1.2
Multiplica por .
Paso 6.2.2
Resta de .
Paso 6.2.3
La respuesta final es .
Paso 6.3
En la derivada es . Dado que es positivo, la función aumenta en .
Incremento en ya que
Incremento en ya que
Paso 7
Paso 7.1
Reemplaza la variable con en la expresión.
Paso 7.2
Simplifica el resultado.
Paso 7.2.1
Simplifica cada término.
Paso 7.2.1.1
Elevar a cualquier potencia positiva da como resultado .
Paso 7.2.1.2
Multiplica por .
Paso 7.2.2
Resta de .
Paso 7.2.3
La respuesta final es .
Paso 7.3
En la derivada es . Dado que esto es negativo, la función está disminuyendo en .
Decrecimiento en desde
Decrecimiento en desde
Paso 8
Paso 8.1
Reemplaza la variable con en la expresión.
Paso 8.2
Simplifica el resultado.
Paso 8.2.1
Simplifica cada término.
Paso 8.2.1.1
Eleva a la potencia de .
Paso 8.2.1.2
Multiplica por .
Paso 8.2.2
Resta de .
Paso 8.2.3
La respuesta final es .
Paso 8.3
En la derivada es . Dado que es positivo, la función aumenta en .
Incremento en ya que
Incremento en ya que
Paso 9
Enumera los intervalos en los que la función aumenta y disminuye.
Incremento en:
Decrecimiento en:
Paso 10