Cálculo Ejemplos

Halle la antiderivada p(t)=t^8-(t^7)/2-t
Paso 1
La función puede obtenerse mediante el cálculo de la integral indefinida de la derivada .
Paso 2
Establece la integral para resolver.
Paso 3
Divide la única integral en varias integrales.
Paso 4
Según la regla de la potencia, la integral de con respecto a es .
Paso 5
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 6
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 7
Según la regla de la potencia, la integral de con respecto a es .
Paso 8
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 9
Según la regla de la potencia, la integral de con respecto a es .
Paso 10
Simplifica.
Toca para ver más pasos...
Paso 10.1
Simplifica.
Paso 10.2
Combina y .
Paso 11
Reordena los términos.
Paso 12
La respuesta es la antiderivada de la función .