Cálculo Ejemplos

Hallar dónde aumenta o desciende la función utilizando derivadas f(x)=x^2e^x
Paso 1
Obtén la primera derivada.
Toca para ver más pasos...
Paso 1.1
Obtén la primera derivada.
Toca para ver más pasos...
Paso 1.1.1
Diferencia con la regla del producto, que establece que es donde y .
Paso 1.1.2
Diferencia con la regla exponencial, que establece que es donde = .
Paso 1.1.3
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.1.4
Simplifica.
Toca para ver más pasos...
Paso 1.1.4.1
Reordena los términos.
Paso 1.1.4.2
Reordena los factores en .
Paso 1.2
La primera derivada de con respecto a es .
Paso 2
Establece la primera derivada igual a , luego resuelve la ecuación .
Toca para ver más pasos...
Paso 2.1
Establece la primera derivada igual a .
Paso 2.2
Factoriza de .
Toca para ver más pasos...
Paso 2.2.1
Factoriza de .
Paso 2.2.2
Factoriza de .
Paso 2.2.3
Factoriza de .
Paso 2.3
Si cualquier factor individual en el lado izquierdo de la ecuación es igual a , la expresión completa será igual a .
Paso 2.4
Establece igual a .
Paso 2.5
Establece igual a y resuelve .
Toca para ver más pasos...
Paso 2.5.1
Establece igual a .
Paso 2.5.2
Resuelve en .
Toca para ver más pasos...
Paso 2.5.2.1
Resta el logaritmo natural de ambos lados de la ecuación para eliminar la variable del exponente.
Paso 2.5.2.2
La ecuación no puede resolverse porque es indefinida.
Indefinida
Paso 2.5.2.3
No hay soluciones para
No hay solución
No hay solución
No hay solución
Paso 2.6
Establece igual a y resuelve .
Toca para ver más pasos...
Paso 2.6.1
Establece igual a .
Paso 2.6.2
Resta de ambos lados de la ecuación.
Paso 2.7
La solución final comprende todos los valores que hacen verdadera.
Paso 3
Los valores que hacen que la derivada sea igual a son .
Paso 4
Divide en intervalos separados alrededor de los valores de que hacen que la derivada sea o indefinida.
Paso 5
Sustituye un valor del intervalo en la derivada para determinar si la función está aumentando o disminuyendo.
Toca para ver más pasos...
Paso 5.1
Reemplaza la variable con en la expresión.
Paso 5.2
Simplifica el resultado.
Toca para ver más pasos...
Paso 5.2.1
Simplifica cada término.
Toca para ver más pasos...
Paso 5.2.1.1
Eleva a la potencia de .
Paso 5.2.1.2
Reescribe la expresión mediante la regla del exponente negativo .
Paso 5.2.1.3
Combina y .
Paso 5.2.1.4
Multiplica por .
Paso 5.2.1.5
Reescribe la expresión mediante la regla del exponente negativo .
Paso 5.2.1.6
Combina y .
Paso 5.2.1.7
Mueve el negativo al frente de la fracción.
Paso 5.2.2
Combina fracciones.
Toca para ver más pasos...
Paso 5.2.2.1
Combina los numeradores sobre el denominador común.
Paso 5.2.2.2
Resta de .
Paso 5.2.3
La respuesta final es .
Paso 5.3
En la derivada es . Dado que es positivo, la función aumenta en .
Incremento en ya que
Incremento en ya que
Paso 6
Sustituye un valor del intervalo en la derivada para determinar si la función está aumentando o disminuyendo.
Toca para ver más pasos...
Paso 6.1
Reemplaza la variable con en la expresión.
Paso 6.2
Simplifica el resultado.
Toca para ver más pasos...
Paso 6.2.1
Simplifica cada término.
Toca para ver más pasos...
Paso 6.2.1.1
Eleva a la potencia de .
Paso 6.2.1.2
Multiplica por .
Paso 6.2.1.3
Reescribe la expresión mediante la regla del exponente negativo .
Paso 6.2.1.4
Multiplica por .
Paso 6.2.1.5
Reescribe la expresión mediante la regla del exponente negativo .
Paso 6.2.1.6
Combina y .
Paso 6.2.1.7
Mueve el negativo al frente de la fracción.
Paso 6.2.2
Combina fracciones.
Toca para ver más pasos...
Paso 6.2.2.1
Combina los numeradores sobre el denominador común.
Paso 6.2.2.2
Simplifica la expresión.
Toca para ver más pasos...
Paso 6.2.2.2.1
Resta de .
Paso 6.2.2.2.2
Mueve el negativo al frente de la fracción.
Paso 6.2.3
La respuesta final es .
Paso 6.3
En la derivada es . Dado que esto es negativo, la función está disminuyendo en .
Decrecimiento en desde
Decrecimiento en desde
Paso 7
Sustituye un valor del intervalo en la derivada para determinar si la función está aumentando o disminuyendo.
Toca para ver más pasos...
Paso 7.1
Reemplaza la variable con en la expresión.
Paso 7.2
Simplifica el resultado.
Toca para ver más pasos...
Paso 7.2.1
Simplifica cada término.
Toca para ver más pasos...
Paso 7.2.1.1
Uno elevado a cualquier potencia es uno.
Paso 7.2.1.2
Multiplica por .
Paso 7.2.1.3
Simplifica.
Paso 7.2.1.4
Multiplica por .
Paso 7.2.2
Suma y .
Paso 7.2.3
La respuesta final es .
Paso 7.3
En la derivada es . Dado que es positivo, la función aumenta en .
Incremento en ya que
Incremento en ya que
Paso 8
Enumera los intervalos en los que la función aumenta y disminuye.
Incremento en:
Decrecimiento en:
Paso 9