Ingresa un problema...
Cálculo Ejemplos
Paso 1
Paso 1.1
Obtener la segunda derivada.
Paso 1.1.1
Obtén la primera derivada.
Paso 1.1.1.1
Diferencia con la regla del producto, que establece que es donde y .
Paso 1.1.1.2
La derivada de con respecto a es .
Paso 1.1.1.3
Diferencia con la regla de la potencia.
Paso 1.1.1.3.1
Combina y .
Paso 1.1.1.3.2
Cancela el factor común de .
Paso 1.1.1.3.2.1
Cancela el factor común.
Paso 1.1.1.3.2.2
Reescribe la expresión.
Paso 1.1.1.3.3
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.1.1.3.4
Multiplica por .
Paso 1.1.2
Obtener la segunda derivada.
Paso 1.1.2.1
Diferencia.
Paso 1.1.2.1.1
Según la regla de la suma, la derivada de con respecto a es .
Paso 1.1.2.1.2
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.1.2.2
La derivada de con respecto a es .
Paso 1.1.2.3
Suma y .
Paso 1.1.3
La segunda derivada de con respecto a es .
Paso 1.2
Establece la segunda derivada igual a luego resuelve la ecuación .
Paso 1.2.1
Establece la segunda derivada igual a .
Paso 1.2.2
Establece el numerador igual a cero.
Paso 1.2.3
Como , no hay soluciones.
No hay solución
No hay solución
No hay solución
Paso 2
Paso 2.1
Establece el argumento en mayor que para obtener el lugar donde está definida la expresión.
Paso 2.2
El dominio son todos los valores de que hacen que la expresión sea definida.
Notación de intervalo:
Notación del constructor de conjuntos:
Notación de intervalo:
Notación del constructor de conjuntos:
Paso 3
Crea intervalos alrededor de los valores de donde la segunda derivada es cero o indefinida.
Paso 4
Paso 4.1
Reemplaza la variable con en la expresión.
Paso 4.2
La respuesta final es .
Paso 4.3
La gráfica es convexa en el intervalo porque es positiva.
Convexo en dado que es positivo
Convexo en dado que es positivo
Paso 5