Ingresa un problema...
Cálculo Ejemplos
Paso 1
La función puede obtenerse mediante el cálculo de la integral indefinida de la derivada .
Paso 2
Establece la integral para resolver.
Paso 3
Multiplica .
Paso 4
Paso 4.1
Eleva a la potencia de .
Paso 4.2
Eleva a la potencia de .
Paso 4.3
Usa la regla de la potencia para combinar exponentes.
Paso 4.4
Suma y .
Paso 4.5
Mueve a la izquierda de .
Paso 5
Divide la única integral en varias integrales.
Paso 6
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 7
Según la regla de la potencia, la integral de con respecto a es .
Paso 8
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 9
Según la regla de la potencia, la integral de con respecto a es .
Paso 10
Paso 10.1
Simplifica.
Paso 10.2
Simplifica.
Paso 10.2.1
Combina y .
Paso 10.2.2
Cancela el factor común de y .
Paso 10.2.2.1
Factoriza de .
Paso 10.2.2.2
Cancela los factores comunes.
Paso 10.2.2.2.1
Factoriza de .
Paso 10.2.2.2.2
Cancela el factor común.
Paso 10.2.2.2.3
Reescribe la expresión.
Paso 10.2.2.2.4
Divide por .
Paso 10.2.3
Combina y .
Paso 10.2.4
Cancela el factor común de y .
Paso 10.2.4.1
Factoriza de .
Paso 10.2.4.2
Cancela los factores comunes.
Paso 10.2.4.2.1
Factoriza de .
Paso 10.2.4.2.2
Cancela el factor común.
Paso 10.2.4.2.3
Reescribe la expresión.
Paso 10.2.4.2.4
Divide por .
Paso 11
La respuesta es la antiderivada de la función .