Cálculo Ejemplos

Hallar la recta tangente horizontal y^3-27y=x^2-90
Paso 1
Set each solution of as a function of .
Paso 2
Because the variable in the equation has a degree greater than , use implicit differentiation to solve for the derivative .
Toca para ver más pasos...
Paso 2.1
Diferencia ambos lados de la ecuación.
Paso 2.2
Diferencia el lado izquierdo de la ecuación.
Toca para ver más pasos...
Paso 2.2.1
Según la regla de la suma, la derivada de con respecto a es .
Paso 2.2.2
Evalúa .
Toca para ver más pasos...
Paso 2.2.2.1
Diferencia con la regla de la cadena, que establece que es donde y .
Toca para ver más pasos...
Paso 2.2.2.1.1
Para aplicar la regla de la cadena, establece como .
Paso 2.2.2.1.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 2.2.2.1.3
Reemplaza todos los casos de con .
Paso 2.2.2.2
Reescribe como .
Paso 2.2.3
Evalúa .
Toca para ver más pasos...
Paso 2.2.3.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.2.3.2
Reescribe como .
Paso 2.3
Diferencia el lado derecho de la ecuación.
Toca para ver más pasos...
Paso 2.3.1
Según la regla de la suma, la derivada de con respecto a es .
Paso 2.3.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 2.3.3
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.3.4
Suma y .
Paso 2.4
Reforma la ecuación al hacer que el lado izquierdo sea igual al lado derecho.
Paso 2.5
Resuelve
Toca para ver más pasos...
Paso 2.5.1
Factoriza de .
Toca para ver más pasos...
Paso 2.5.1.1
Factoriza de .
Paso 2.5.1.2
Factoriza de .
Paso 2.5.1.3
Factoriza de .
Paso 2.5.2
Reescribe como .
Paso 2.5.3
Factoriza.
Toca para ver más pasos...
Paso 2.5.3.1
Dado que ambos términos son cuadrados perfectos, factoriza con la fórmula de la diferencia de cuadrados, , donde y .
Paso 2.5.3.2
Elimina los paréntesis innecesarios.
Paso 2.5.4
Divide cada término en por y simplifica.
Toca para ver más pasos...
Paso 2.5.4.1
Divide cada término en por .
Paso 2.5.4.2
Simplifica el lado izquierdo.
Toca para ver más pasos...
Paso 2.5.4.2.1
Cancela el factor común de .
Toca para ver más pasos...
Paso 2.5.4.2.1.1
Cancela el factor común.
Paso 2.5.4.2.1.2
Reescribe la expresión.
Paso 2.5.4.2.2
Cancela el factor común de .
Toca para ver más pasos...
Paso 2.5.4.2.2.1
Cancela el factor común.
Paso 2.5.4.2.2.2
Reescribe la expresión.
Paso 2.5.4.2.3
Cancela el factor común de .
Toca para ver más pasos...
Paso 2.5.4.2.3.1
Cancela el factor común.
Paso 2.5.4.2.3.2
Divide por .
Paso 2.6
Reemplaza con .
Paso 3
Establece la derivada igual a luego resuelve la ecuación .
Toca para ver más pasos...
Paso 3.1
Establece el numerador igual a cero.
Paso 3.2
Divide cada término en por y simplifica.
Toca para ver más pasos...
Paso 3.2.1
Divide cada término en por .
Paso 3.2.2
Simplifica el lado izquierdo.
Toca para ver más pasos...
Paso 3.2.2.1
Cancela el factor común de .
Toca para ver más pasos...
Paso 3.2.2.1.1
Cancela el factor común.
Paso 3.2.2.1.2
Divide por .
Paso 3.2.3
Simplifica el lado derecho.
Toca para ver más pasos...
Paso 3.2.3.1
Divide por .
Paso 4
Solve the function at .
Toca para ver más pasos...
Paso 4.1
Reemplaza la variable con en la expresión.
Paso 4.2
Simplifica el resultado.
Toca para ver más pasos...
Paso 4.2.1
Elevar a cualquier potencia positiva da como resultado .
Paso 4.2.2
Resta de .
Paso 4.2.3
La respuesta final es .
Paso 5
The horizontal tangent lines are
Paso 6