Cálculo Ejemplos

Halle la antiderivada (x-4) raíz cuadrada de x+4
Paso 1
Escribe como una función.
Paso 2
La función puede obtenerse mediante el cálculo de la integral indefinida de la derivada .
Paso 3
Establece la integral para resolver.
Paso 4
Integra por partes mediante la fórmula , donde y .
Paso 5
Simplifica.
Toca para ver más pasos...
Paso 5.1
Combina y .
Paso 5.2
Combina y .
Paso 6
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 7
Sea . Entonces . Reescribe mediante y .
Toca para ver más pasos...
Paso 7.1
Deja . Obtén .
Toca para ver más pasos...
Paso 7.1.1
Diferencia .
Paso 7.1.2
Según la regla de la suma, la derivada de con respecto a es .
Paso 7.1.3
Diferencia con la regla de la potencia, que establece que es donde .
Paso 7.1.4
Como es constante con respecto a , la derivada de con respecto a es .
Paso 7.1.5
Suma y .
Paso 7.2
Reescribe el problema mediante y .
Paso 8
Según la regla de la potencia, la integral de con respecto a es .
Paso 9
Simplifica.
Toca para ver más pasos...
Paso 9.1
Reescribe como .
Paso 9.2
Simplifica.
Toca para ver más pasos...
Paso 9.2.1
Mueve el negativo al frente de la fracción.
Paso 9.2.2
Combina los numeradores sobre el denominador común.
Paso 9.2.3
Combina y .
Paso 9.2.4
Multiplica por .
Paso 9.2.5
Multiplica por .
Paso 9.2.6
Multiplica por .
Paso 10
Reemplaza todos los casos de con .
Paso 11
Reordena los términos.
Paso 12
La respuesta es la antiderivada de la función .