Ingresa un problema...
Cálculo Ejemplos
Paso 1
Paso 1.1
Resta el límite del numerador y el límite del denominador.
Paso 1.2
Evalúa el límite del numerador.
Paso 1.2.1
Evalúa el límite.
Paso 1.2.1.1
Divide el límite mediante la regla de la suma de límites en el límite en que se aproxima a .
Paso 1.2.1.2
Mueve el exponente de fuera del límite mediante la regla de la potencia de límites.
Paso 1.2.1.3
Evalúa el límite de que es constante cuando se acerca a .
Paso 1.2.2
Evalúa el límite de mediante el ingreso de para .
Paso 1.2.3
Simplifica la respuesta.
Paso 1.2.3.1
Simplifica cada término.
Paso 1.2.3.1.1
Eleva a la potencia de .
Paso 1.2.3.1.2
Multiplica por .
Paso 1.2.3.2
Resta de .
Paso 1.3
Evalúa el límite del denominador.
Paso 1.3.1
Divide el límite mediante la regla de la suma de límites en el límite en que se aproxima a .
Paso 1.3.2
Mueve el exponente de fuera del límite mediante la regla de la potencia de límites.
Paso 1.3.3
Mueve el término fuera del límite porque es constante con respecto a .
Paso 1.3.4
Evalúa el límite de que es constante cuando se acerca a .
Paso 1.3.5
Evalúa los límites mediante el ingreso de para todos los casos de .
Paso 1.3.5.1
Evalúa el límite de mediante el ingreso de para .
Paso 1.3.5.2
Evalúa el límite de mediante el ingreso de para .
Paso 1.3.6
Simplifica la respuesta.
Paso 1.3.6.1
Simplifica cada término.
Paso 1.3.6.1.1
Eleva a la potencia de .
Paso 1.3.6.1.2
Multiplica por .
Paso 1.3.6.1.3
Multiplica por .
Paso 1.3.6.2
Suma y .
Paso 1.3.6.3
Resta de .
Paso 1.3.6.4
La expresión contiene una división por . La expresión es indefinida.
Indefinida
Paso 1.3.7
La expresión contiene una división por . La expresión es indefinida.
Indefinida
Paso 1.4
La expresión contiene una división por . La expresión es indefinida.
Indefinida
Paso 2
Como es de forma indeterminada, aplica la regla de l'Hôpital. La regla de l'Hôpital establece que el límite de un cociente de funciones es igual al límite del cociente de sus derivadas.
Paso 3
Paso 3.1
Diferencia el numerador y el denominador.
Paso 3.2
Según la regla de la suma, la derivada de con respecto a es .
Paso 3.3
Diferencia con la regla de la potencia, que establece que es donde .
Paso 3.4
Como es constante con respecto a , la derivada de con respecto a es .
Paso 3.5
Suma y .
Paso 3.6
Según la regla de la suma, la derivada de con respecto a es .
Paso 3.7
Diferencia con la regla de la potencia, que establece que es donde .
Paso 3.8
Evalúa .
Paso 3.8.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 3.8.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 3.8.3
Multiplica por .
Paso 3.9
Como es constante con respecto a , la derivada de con respecto a es .
Paso 3.10
Suma y .
Paso 4
Mueve el término fuera del límite porque es constante con respecto a .
Paso 5
Divide el límite mediante la regla del cociente de límites en el límite en que se aproxima a .
Paso 6
Mueve el exponente de fuera del límite mediante la regla de la potencia de límites.
Paso 7
Divide el límite mediante la regla de la suma de límites en el límite en que se aproxima a .
Paso 8
Mueve el término fuera del límite porque es constante con respecto a .
Paso 9
Mueve el exponente de fuera del límite mediante la regla de la potencia de límites.
Paso 10
Evalúa el límite de que es constante cuando se acerca a .
Paso 11
Paso 11.1
Evalúa el límite de mediante el ingreso de para .
Paso 11.2
Evalúa el límite de mediante el ingreso de para .
Paso 12
Paso 12.1
Eleva a la potencia de .
Paso 12.2
Simplifica el denominador.
Paso 12.2.1
Eleva a la potencia de .
Paso 12.2.2
Multiplica por .
Paso 12.2.3
Suma y .
Paso 12.3
Cancela el factor común de y .
Paso 12.3.1
Factoriza de .
Paso 12.3.2
Cancela los factores comunes.
Paso 12.3.2.1
Factoriza de .
Paso 12.3.2.2
Cancela el factor común.
Paso 12.3.2.3
Reescribe la expresión.
Paso 12.4
Multiplica .
Paso 12.4.1
Combina y .
Paso 12.4.2
Multiplica por .