Ingresa un problema...
Cálculo Ejemplos
Paso 1
Paso 1.1
Resta el límite del numerador y el límite del denominador.
Paso 1.2
Evalúa el límite del numerador.
Paso 1.2.1
Divide el límite mediante la regla de la suma de límites en el límite en que se aproxima a .
Paso 1.2.2
Mueve el límite dentro del exponente.
Paso 1.2.3
Mueve el límite dentro del exponente.
Paso 1.2.4
Evalúa el límite de que es constante cuando se acerca a .
Paso 1.2.5
Evalúa los límites mediante el ingreso de para todos los casos de .
Paso 1.2.5.1
Evalúa el límite de mediante el ingreso de para .
Paso 1.2.5.2
Evalúa el límite de mediante el ingreso de para .
Paso 1.2.6
Simplifica la respuesta.
Paso 1.2.6.1
Simplifica cada término.
Paso 1.2.6.1.1
Evalúa el exponente.
Paso 1.2.6.1.2
Evalúa el exponente.
Paso 1.2.6.1.3
Multiplica por .
Paso 1.2.6.1.4
Multiplica por .
Paso 1.2.6.2
Resta de .
Paso 1.2.6.3
Resta de .
Paso 1.3
Evalúa el límite del denominador.
Paso 1.3.1
Evalúa el límite.
Paso 1.3.1.1
Divide el límite mediante la regla de la suma de límites en el límite en que se aproxima a .
Paso 1.3.1.2
Mueve el exponente de fuera del límite mediante la regla de la potencia de límites.
Paso 1.3.1.3
Evalúa el límite de que es constante cuando se acerca a .
Paso 1.3.2
Evalúa el límite de mediante el ingreso de para .
Paso 1.3.3
Simplifica la respuesta.
Paso 1.3.3.1
Simplifica cada término.
Paso 1.3.3.1.1
Uno elevado a cualquier potencia es uno.
Paso 1.3.3.1.2
Multiplica por .
Paso 1.3.3.2
Resta de .
Paso 1.3.3.3
La expresión contiene una división por . La expresión es indefinida.
Indefinida
Paso 1.3.4
La expresión contiene una división por . La expresión es indefinida.
Indefinida
Paso 1.4
La expresión contiene una división por . La expresión es indefinida.
Indefinida
Paso 2
Como es de forma indeterminada, aplica la regla de l'Hôpital. La regla de l'Hôpital establece que el límite de un cociente de funciones es igual al límite del cociente de sus derivadas.
Paso 3
Paso 3.1
Diferencia el numerador y el denominador.
Paso 3.2
Según la regla de la suma, la derivada de con respecto a es .
Paso 3.3
Diferencia con la regla exponencial, que establece que es donde = .
Paso 3.4
Evalúa .
Paso 3.4.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 3.4.2
Diferencia con la regla exponencial, que establece que es donde = .
Paso 3.4.3
Elimina los paréntesis.
Paso 3.5
Como es constante con respecto a , la derivada de con respecto a es .
Paso 3.6
Suma y .
Paso 3.7
Según la regla de la suma, la derivada de con respecto a es .
Paso 3.8
Diferencia con la regla de la potencia, que establece que es donde .
Paso 3.9
Como es constante con respecto a , la derivada de con respecto a es .
Paso 3.10
Suma y .
Paso 4
Mueve el término fuera del límite porque es constante con respecto a .
Paso 5
Divide el límite mediante la regla del cociente de límites en el límite en que se aproxima a .
Paso 6
Divide el límite mediante la regla de la suma de límites en el límite en que se aproxima a .
Paso 7
Mueve el término fuera del límite porque es constante con respecto a .
Paso 8
Mueve el límite dentro del exponente.
Paso 9
Mueve el término fuera del límite porque es constante con respecto a .
Paso 10
Mueve el límite dentro del exponente.
Paso 11
Paso 11.1
Evalúa el límite de mediante el ingreso de para .
Paso 11.2
Evalúa el límite de mediante el ingreso de para .
Paso 11.3
Evalúa el límite de mediante el ingreso de para .
Paso 12
Paso 12.1
Divide por .
Paso 12.2
Simplifica cada término.
Paso 12.2.1
Evalúa el exponente.
Paso 12.2.2
Mueve a la izquierda de .
Paso 12.2.3
Evalúa el exponente.
Paso 12.2.4
Multiplica por .
Paso 12.3
Aplica la propiedad distributiva.
Paso 12.4
Cancela el factor común de .
Paso 12.4.1
Factoriza de .
Paso 12.4.2
Cancela el factor común.
Paso 12.4.3
Reescribe la expresión.
Paso 12.5
Multiplica .
Paso 12.5.1
Combina y .
Paso 12.5.2
Combina y .
Paso 12.6
Mueve el negativo al frente de la fracción.