Cálculo Ejemplos

Hallar los puntos críticos F(t)=Ue^t+Ve^(-t)
Paso 1
Obtén la primera derivada.
Toca para ver más pasos...
Paso 1.1
Obtén la primera derivada.
Toca para ver más pasos...
Paso 1.1.1
Según la regla de la suma, la derivada de con respecto a es .
Paso 1.1.2
Evalúa .
Toca para ver más pasos...
Paso 1.1.2.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.1.2.2
Diferencia con la regla exponencial, que establece que es donde = .
Paso 1.1.3
Evalúa .
Toca para ver más pasos...
Paso 1.1.3.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.1.3.2
Diferencia con la regla de la cadena, que establece que es donde y .
Toca para ver más pasos...
Paso 1.1.3.2.1
Para aplicar la regla de la cadena, establece como .
Paso 1.1.3.2.2
Diferencia con la regla exponencial, que establece que es donde = .
Paso 1.1.3.2.3
Reemplaza todos los casos de con .
Paso 1.1.3.3
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.1.3.4
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.1.3.5
Multiplica por .
Paso 1.1.3.6
Mueve a la izquierda de .
Paso 1.1.3.7
Reescribe como .
Paso 1.1.4
Simplifica.
Toca para ver más pasos...
Paso 1.1.4.1
Reordena los términos.
Paso 1.1.4.2
Reordena los factores en .
Paso 1.2
La primera derivada de con respecto a es .
Paso 2
Establece la primera derivada igual a .
Paso 3
Obtén los valores en el lugar donde la derivada es indefinida.
Toca para ver más pasos...
Paso 3.1
El dominio de la expresión son todos números reales, excepto cuando la expresión no está definida. En ese caso, no hay ningún número real que haga que la expresión sea indefinida.
Paso 4
No hay valores de en el dominio del problema original donde la derivada es o indefinida.
No se obtuvieron puntos críticos