Ingresa un problema...
Cálculo Ejemplos
Paso 1
Paso 1.1
Según la regla de la suma, la derivada de con respecto a es .
Paso 1.2
Evalúa .
Paso 1.2.1
Combina y .
Paso 1.2.2
Combina y .
Paso 1.2.3
Mueve a la izquierda de .
Paso 1.2.4
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.2.5
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.2.6
Para escribir como una fracción con un denominador común, multiplica por .
Paso 1.2.7
Combina y .
Paso 1.2.8
Combina los numeradores sobre el denominador común.
Paso 1.2.9
Simplifica el numerador.
Paso 1.2.9.1
Multiplica por .
Paso 1.2.9.2
Resta de .
Paso 1.2.10
Combina y .
Paso 1.2.11
Multiplica por .
Paso 1.2.12
Multiplica por .
Paso 1.2.13
Multiplica por .
Paso 1.2.14
Cancela el factor común.
Paso 1.2.15
Divide por .
Paso 1.3
Evalúa .
Paso 1.3.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.3.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.3.3
Multiplica por .
Paso 1.4
Evalúa .
Paso 1.4.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.4.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.4.3
Multiplica por .
Paso 2
Paso 2.1
Según la regla de la suma, la derivada de con respecto a es .
Paso 2.2
Evalúa .
Paso 2.2.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.2.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 2.2.3
Para escribir como una fracción con un denominador común, multiplica por .
Paso 2.2.4
Combina y .
Paso 2.2.5
Combina los numeradores sobre el denominador común.
Paso 2.2.6
Simplifica el numerador.
Paso 2.2.6.1
Multiplica por .
Paso 2.2.6.2
Resta de .
Paso 2.2.7
Mueve el negativo al frente de la fracción.
Paso 2.2.8
Combina y .
Paso 2.2.9
Combina y .
Paso 2.2.10
Mueve al denominador mediante la regla del exponente negativo .
Paso 2.3
Diferencia con la regla de la constante.
Paso 2.3.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.3.2
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.4
Combina los términos.
Paso 2.4.1
Suma y .
Paso 2.4.2
Suma y .
Paso 3
La segunda derivada de con respecto a es .