Ingresa un problema...
Cálculo Ejemplos
Paso 1
Paso 1.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.2
Diferencia con la regla del producto, que establece que es donde y .
Paso 1.3
Diferencia con la regla de la cadena, que establece que es donde y .
Paso 1.3.1
Para aplicar la regla de la cadena, establece como .
Paso 1.3.2
La derivada de con respecto a es .
Paso 1.3.3
Reemplaza todos los casos de con .
Paso 1.4
Diferencia.
Paso 1.4.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.4.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.4.3
Multiplica por .
Paso 1.5
Diferencia con la regla de la cadena, que establece que es donde y .
Paso 1.5.1
Para aplicar la regla de la cadena, establece como .
Paso 1.5.2
Diferencia con la regla exponencial, que establece que es donde = .
Paso 1.5.3
Reemplaza todos los casos de con .
Paso 1.6
Diferencia.
Paso 1.6.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.6.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.6.3
Multiplica por .
Paso 1.7
Simplifica.
Paso 1.7.1
Aplica la propiedad distributiva.
Paso 1.7.2
Elimina los paréntesis.
Paso 1.7.3
Reordena los términos.
Paso 1.7.4
Reordena los factores en .
Paso 2
Paso 2.1
Según la regla de la suma, la derivada de con respecto a es .
Paso 2.2
Evalúa .
Paso 2.2.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.2.2
Diferencia con la regla del producto, que establece que es donde y .
Paso 2.2.3
Diferencia con la regla de la cadena, que establece que es donde y .
Paso 2.2.3.1
Para aplicar la regla de la cadena, establece como .
Paso 2.2.3.2
La derivada de con respecto a es .
Paso 2.2.3.3
Reemplaza todos los casos de con .
Paso 2.2.4
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.2.5
Diferencia con la regla de la potencia, que establece que es donde .
Paso 2.2.6
Diferencia con la regla de la cadena, que establece que es donde y .
Paso 2.2.6.1
Para aplicar la regla de la cadena, establece como .
Paso 2.2.6.2
Diferencia con la regla exponencial, que establece que es donde = .
Paso 2.2.6.3
Reemplaza todos los casos de con .
Paso 2.2.7
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.2.8
Diferencia con la regla de la potencia, que establece que es donde .
Paso 2.2.9
Multiplica por .
Paso 2.2.10
Multiplica por .
Paso 2.3
Evalúa .
Paso 2.3.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.3.2
Diferencia con la regla del producto, que establece que es donde y .
Paso 2.3.3
Diferencia con la regla de la cadena, que establece que es donde y .
Paso 2.3.3.1
Para aplicar la regla de la cadena, establece como .
Paso 2.3.3.2
La derivada de con respecto a es .
Paso 2.3.3.3
Reemplaza todos los casos de con .
Paso 2.3.4
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.3.5
Diferencia con la regla de la potencia, que establece que es donde .
Paso 2.3.6
Diferencia con la regla de la cadena, que establece que es donde y .
Paso 2.3.6.1
Para aplicar la regla de la cadena, establece como .
Paso 2.3.6.2
Diferencia con la regla exponencial, que establece que es donde = .
Paso 2.3.6.3
Reemplaza todos los casos de con .
Paso 2.3.7
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.3.8
Diferencia con la regla de la potencia, que establece que es donde .
Paso 2.3.9
Multiplica por .
Paso 2.3.10
Multiplica por .
Paso 2.4
Simplifica.
Paso 2.4.1
Aplica la propiedad distributiva.
Paso 2.4.2
Aplica la propiedad distributiva.
Paso 2.4.3
Combina los términos.
Paso 2.4.3.1
Eleva a la potencia de .
Paso 2.4.3.2
Eleva a la potencia de .
Paso 2.4.3.3
Usa la regla de la potencia para combinar exponentes.
Paso 2.4.3.4
Suma y .
Paso 2.4.3.5
Eleva a la potencia de .
Paso 2.4.3.6
Eleva a la potencia de .
Paso 2.4.3.7
Usa la regla de la potencia para combinar exponentes.
Paso 2.4.3.8
Suma y .
Paso 2.4.3.9
Reordena y .
Paso 2.4.3.10
Suma y .
Paso 2.4.4
Reordena los términos.
Paso 2.4.5
Reordena los factores en .
Paso 3
La segunda derivada de con respecto a es .