Ingresa un problema...
Cálculo Ejemplos
Paso 1
La función puede obtenerse mediante el cálculo de la integral indefinida de la derivada .
Paso 2
Establece la integral para resolver.
Paso 3
Paso 3.1
Deja . Obtén .
Paso 3.1.1
Diferencia .
Paso 3.1.2
Como es constante con respecto a , la derivada de con respecto a es .
Paso 3.1.3
Diferencia con la regla de la potencia, que establece que es donde .
Paso 3.1.4
Multiplica por .
Paso 3.2
Reescribe el problema mediante y .
Paso 4
Paso 4.1
Multiplica por la recíproca de la fracción para dividir por .
Paso 4.2
Multiplica por .
Paso 4.3
Mueve a la izquierda de .
Paso 5
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 6
Según la regla de la potencia, la integral de con respecto a es .
Paso 7
Paso 7.1
Reescribe como .
Paso 7.2
Simplifica.
Paso 7.2.1
Combina y .
Paso 7.2.2
Cancela el factor común de y .
Paso 7.2.2.1
Factoriza de .
Paso 7.2.2.2
Cancela los factores comunes.
Paso 7.2.2.2.1
Factoriza de .
Paso 7.2.2.2.2
Cancela el factor común.
Paso 7.2.2.2.3
Reescribe la expresión.
Paso 8
Reemplaza todos los casos de con .
Paso 9
Reordena los términos.
Paso 10
La respuesta es la antiderivada de la función .